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CHAPTER

ONE

INTRODUCTION

Theoretical Physics Reference is an attempt to derive all theoretical physics equations from the general and special
relativity and the standard model of particle physics.

The goals are:

• All calculations are very explicit, with no intermediate steps left out.

• Start from the most general (and correct) physical theories (general relativity or standard model) and derive the
specialized equations from them (e.g. the Schrödinger equation).

• Math is developed in the math section (not in the physics section).

• Theory should be presented as short and as explicitly as possible. Then there should be arbitrary number of
examples, to show how the theory is used.

• There should be just one notation used throughout the book.

This is a work in progress and some chapters don’t conform to the above goals yet. Usually first some derivation is
written, as we understood it, then the mathematical tools are extracted and put into the math section, and the rest is fit
where it belongs. Sometimes we don’t understand some parts, then those are currently left there as they are.

1
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CHAPTER

TWO

MATHEMATICS

2.1 Integration

This chapter doesn’t assume any knowledge about differential geometry. The most versatile way to do integration over
manifolds is explained in the differential geometry section.

2.1.1 General Case

We want to integrate a function f over a k-manifold in Rn, parametrized as:

ϕ : Rk → Rn ϕ(t1, t2, . . . , tk) =


ϕ1(t1, t2, . . . , tk)
ϕ2(t1, t2, . . . , tk)

...
ϕn(t1, t2, . . . , tk)


then the integral of f(x1, x2, . . . , xn) over ϕ is:∫

M

f(x1, x2, . . . , xn) dS =

∫
Rn

f(ϕ(t1, t2, . . . , tk))
√

det G dt1dt2 · · · dtk

where G is called a Gram matrix and J is a Jacobian:

(G)ij = (JTJ)ij = JikJkj =
∂ϕk
∂ti

∂ϕk
∂tj

(J)ij =
∂ϕi
∂tj

=


∂ϕ
∂t1

∂ϕ
∂t2

· · · ∂ϕ
∂tk

...
...

...
...

...
...

...
...

...
...

...
...


The idea behind this comes from the fact that the volume of the k-dimensional parallelepiped spanned by the vectors

∂ϕ

∂t1
, . . . ,

∂ϕ

∂tk

is given by

V =
√

det JTJ

where J is an n× k matrix having those vectors as its column vectors.

3
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Example

Let’s integrate a function f(x, y, z) over the surface of a sphere in 3D (e.g. k = 2 and n = 3):

ϕ(θ, φ) =

r sin θ cosφ
r sin θ sinφ
r cos θ


J =

−r sin θ sinφ r cos θ cosφ
r sin θ cosφ r cos θ sinφ

0 −r sin θ


G = JTJ =

(
−r sin θ sinφ r sin θ cosφ 0
r cos θ cosφ r cos θ sinφ −r sin θ

)−r sin θ sinφ r cos θ cosφ
r sin θ cosφ r cos θ sinφ

0 −r sin θ

 =

(
r2 sin2 θ 0

0 r2

)
det G = r4 sin2 θ
√

det G = r2 sin θ∫
M

f(x, y, z)dS =

∫
Rn

f(r sin θ cosφ, r sin θ sinφ, r cos θ) r2 sin θ dθ dφ =

=

∫ π

0

dθ

∫ 2π

0

dφ f(r sin θ cosφ, r sin θ sinφ, r cos θ) r2 sin θ

Let’s say we want to calculate the surface area of a sphere, so we set f(x, y, z) = 1 and get:∫
M

dS =

∫ π

0

dθ

∫ 2π

0

dφ r2 sin θ = 2πr2

∫ π

0

dθ sin θ = 4πr2

2.1.2 Special Cases

k = n

det G = det JRJ = (det J)2

dS = |det J|dt1 dt2 · · · dtk

k = 1

det G = det

((
dϕ1

dt

)2

+

(
dϕ2

dt

)2

+ · · ·

)
=

∣∣∣∣dϕdt
∣∣∣∣2

dS =

∣∣∣∣dϕdt
∣∣∣∣ dt

4 Chapter 2. Mathematics
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k = n - 1

det G = det JRJ =

= det(· · · )2 + det(· · · )2 + · · ·+ det(. . . )2 =

=

∣∣∣∣∣∣∣∣∣∣∣
det


∂ϕ
∂t1

∂ϕ
∂t2

· · · ∂ϕ
∂tk

e1

...
...

...
... e2

...
...

...
...

...
...

...
...

... en



∣∣∣∣∣∣∣∣∣∣∣

2

≡ |ωϕ|2

dS = |ωϕ|dt1 dt2 · · · dtk

ωϕ is a generalization of a vector cross product. The det(· · · ) symbol means a determinant of a matrix with one row
removed (first term in the sum has first row removed, second term has second row removed, etc.).

k = 2, n = 3

det G =

∣∣∣∣ ∂ϕ∂t1 × ∂ϕ

∂t2

∣∣∣∣2
dS =

∣∣∣∣ ∂ϕ∂t1 × ∂ϕ

∂t2

∣∣∣∣ dt1 dt2

y = f(x, z)

det G = 1 +

(
∂f

∂x

)2

+

(
∂f

∂z

)2

dS =

√
1 +

(
∂f

∂x

)2

+

(
∂f

∂z

)2

dxdz

in general for xj = f(x1, x2, . . . , xn) we get:

det G = 1 +

(
∂f

∂x1

)2

+

(
∂f

∂x2

)2

+ · · ·

dS =

√
1 +

(
∂f

∂x1

)2

+

(
∂f

∂x2

)2

+ · · · dx1 dx2 · · · dxn

The “xj” term is missing in the sums above.

Implicit Surface

For a surface given explicitly by

F (x1, x2, ..., xn) = 0

we get:

dS = |∇F |
∣∣∣∣ ∂F∂xn

∣∣∣∣ dx1 · · · dxn−1

2.1. Integration 5
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Orthogonal Coordinates

If the coordinate vectors are orthogonal to each other:

∂ϕ

∂ti
· ∂ϕ
∂ti

= 0 for i 6= j

we get:

dS =

∣∣∣∣ ∂ϕ∂t1
∣∣∣∣ ∣∣∣∣ ∂ϕ∂t2

∣∣∣∣ · · · ∣∣∣∣ ∂ϕ∂tk
∣∣∣∣dt1 · · · dtk

2.1.3 Motivation

Let the k-dimensional parallelepiped P be spanned by the vectors

∂ϕ

t1
, . . . ,

∂ϕ

tk

and let J is n× k matrix having these vectors as its column vectors. Then the area of P is

V =
√

det JTJ

so the definition of the integral over a manifold is just approximating the surface by infinitesimal parallelepipeds and
integrating over them.

2.1.4 Example

Let’s calculate the total distance traveled by a body in 1D, whose position is given by s(t):

l =

∫
γ

ds =

∫ t2

t1

∣∣∣∣dsdt
∣∣∣∣dt =

=

∫ t′

t1

∣∣∣∣dsdt
∣∣∣∣dt+

∫ t′′

t′

∣∣∣∣dsdt
∣∣∣∣dt+ · · ·+

∫ t2

t′′′′···

∣∣∣∣dsdt
∣∣∣∣ dt =

= |s(t′)− s(t1)|+ |s(t′′)− s(t′)|+ · · ·+ |s(t2)− s(t′′′′···)|

where t′, t′′, ... are all the points at which
∣∣ds

dt

∣∣ = 0, so each of the integrals in the above sum has either positive or
negative integrand.

2.2 Residue Theorem

The Residue Theorem says that a contour integral of an analytic function f over a closed curve γ (loop) is equal to the
sum of residues Reszk f(z) of the function at all singularities zk inside the loop:∫

γ

f(z)dz = 2πi
∑
zk

Res
z=zk

f(z)

Residue Resz0 f(z) is defined as the contour integral around z0 divided by 2πi:

Res
z=z0

f(z) =
1

2πi

∫
|z−z0|=ε

f(z)dz

6 Chapter 2. Mathematics
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and it is equal to the coefficient of 1
z−z0 in the Laurent series of f(z) around the point z0, as can be easily calculated:

Res
z=z0

f(z) =
1

2πi

∫
|z−z0|=ε

f(z)dz =
1

2πi

∫
|z−z0|=ε

∞∑
n=−∞

cn(z − z0)ndz =

=

∞∑
n=−∞

cn
1

2πi

∫
|z−z0|=ε

(z − z0)ndz =

∞∑
n=−∞

cnδn,−1 = c−1

where we used the result of the following integral (we integrate over the curve z = z0 + εeiϕ, 0 ≤ ϕ < 2π, so
dz = iεeiϕdϕ):

1

2πi

∫
|z−z0|=ε

(z − z0)ndz =
1

2πi

2π∫
0

(z0 + εeiϕ − z0)niεeiϕdϕ =
εn+1

2π

2π∫
0

eiϕ(n+1)dϕ =

=


εn+1

2π

[
eiϕ(n+1)

i(n+1)

]2π
0

= 0 for n 6= −1

1
2π

2π∫
0

dϕ = 1 for n = −1
= δn,−1

2.2.1 Computation of Residues

One has to calculate the c−1 coefficient in the Laurent series. One way to do that is to write f(z) as:

f(z) =
H(z)

(z − z0)m

where H(z) is analytic in the vicinity of z0, e.g. f(z) has a pole of order m at z0. Then:

Res
z=z0

f(z) = c−1 =
1

(m− 1)!

dmH(z)

dzm

∣∣∣∣
z=z0

in particular for m = 1:

Res
z=z0

f(z) = H(z0) = lim
z→z0

(z − z0)f(z)

for m = 2:

Res
z=z0

f(z) = H ′(z0) = lim
z→z0

d

dz
[(z − z0)2f(z)]

f has a pole of order 1 at z0, g is analytic at z0:

Res
z=z0

f(z)g(z) = lim
z→z0

(z − z0)f(z)g(z) = g(z0) lim
z→z0

(z − z0)f(z) = g(z0) Res
z=z0

f(z)

f(z0) = 0, but f ′(z0) 6= 0 and g is analytic at z0:

Res
z=z0

g(z)

f(z)
= g(z0) lim

z→z0

z − z0

f(z)
= g(z0) lim

z→z0

z − z0

f(z)− f(z0)
=

g(z0)

f ′(z0)

2.2. Residue Theorem 7
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2.2.2 Useful Formulas

Jordan’s Lemma

For estimating integrals over semicircles Ω (z = Reiϕ, 0 ≤ ϕ ≤ π), we can use the following estimates:∣∣∣∣∫
Ω

g(z)dz

∣∣∣∣ ≤ πRmax
Ω
|g(z)|∣∣∣∣∫

Ω

eiαzg(z)dz

∣∣∣∣ ≤ π

α
max

Ω
|g(z)| for α > 0

(In the first case the integration path can be extended to the full circle if needed (0 ≤ ϕ ≤ 2π), in the second case the
semicircle is the maximum path. Also if α < 0, we need to integrate over the lower semicircle.) These formulas can
be used to make sure the integral over the semicircle goes to zero as R → ∞. Intuitively speaking, in the first case
g(z) must vanish faster than 1

R (e.g. 1
R2 is ok), in the second case it’s enough if g(z) just goes to 0 (no matter how

fast).

The estimates can be proved easily:∣∣∣∣∫
Ω

g(z)dz

∣∣∣∣ =

∣∣∣∣∫ π

0

g(Reiϕ)iReiϕdϕ

∣∣∣∣ ≤ ∫ π

0

∣∣g(Reiϕ)
∣∣Rdϕ ≤ Rmax

Ω
|g(z)|

∫ π

0

dϕ = πRmax
Ω
|g(z)|

and ∣∣∣∣∫
Ω

eiαzg(z)dz

∣∣∣∣ =

∣∣∣∣∫ π

0

eiαRe
iϕ

g(Reiϕ)iReiϕdϕ

∣∣∣∣ ≤
≤
∫ π

0

e−αR sinϕ
∣∣g(Reiϕ)

∣∣Rdϕ ≤ Rmax
Ω
|g(z)|

∫ π

0

e−αR sinϕdϕ <

<
π

α
max

Ω
|g(z)|

where we use the following useful estimate for the integral (valid for α > 0):

∫ π

0

e−αR sinϕdϕ < 2

∫ π
2

0

e−αR
2
πϕdϕ = 2

[
e−αR

2
πϕ

−αR 2
π

]π/2
0

=

=
2

−αR 2
π

[
e−αR − 1

]
=

π

αR
(1− e−αR) <

π

αR

Other

Sometimes it is useful to integrate over the arc z = z0 + εeiϕ, ϕ0 ≤ ϕ ≤ ϕ0 + α, and let ε → 0 at the end. If the
function is analytic, the result is 0. If the function has a pole of order n > 1, the result is infinity, unless it’s a full
circle (in which case the result is 0). The remaining case is if the function has a pole of order one, e.g. it can be written
(H(z) is analytic at z0):

f(z) =
H(z)

z − z0

Then: ∫
Ω

f(z)dz =

∫
Ω

H(z)

z − z0
dz =

∫ ϕ0+α

ϕ0

H(z0 + εeiϕ)

z0 + εeiϕ − z0
εieiϕdϕ =

=

∫ ϕ0+α

ϕ0

H(z0 + εeiϕ)idϕ→
∫ ϕ0+α

ϕ0

H(z0)idϕ = iαH(z0) = iα Res
z=z0

f(z)

8 Chapter 2. Mathematics
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2.2.3 Complex Substitution

When substituting in integrals, as long as we just substitute for real functions, we use the regular substitution theorem,
e.g. x = y + 1 (f(x) can be a complex function):∫ ∞

−∞
f(x)dx =

∫ ∞
−∞

f(y + 1)dy

if, on the other hand, we substitute for complex functions, e.g. x = iy:∫ ∞
−∞

f(x)dx =

∫ −i∞
i∞

f(iy)idy →
∫ −∞
∞

f(iy)idy

then the first two integrals in the left hand side are equal, however the integral on the right hand side is over a different
integration path and we need to use the Residue Theorem to relate those integrals, e.g. in general the two integrals on
the LHS and the integral on the RHS are not equal. However the idea is that the integral after the substitution (and
changing the limits, e.g. the integration path) is easier to evaluate, so the substitution guides us which integration path
to choose for the Residue Theorem.

2.3 Fourier Transform

The Fourier transform is:

F [f(x)] ≡ f̃(ω) =

∫ ∞
−∞

f(x)e−iωx dx

F−1[f̃(ω)] = f(x) =
1

2π

∫ ∞
−∞

f̃(ω)e+iωx dω

To show that it works:

F−1F [f(x)] =
1

2π

∫ ∞
−∞

[∫ ∞
−∞

f(x)e−iωx dx

]
e+iωx dω =

1

2π

∫ ∞
−∞

[∫ ∞
−∞

f(x′)e−iωx
′
dx′
]
e+iωx dω =

=

∫ ∞
−∞

f(x′)

[
1

2π

∫ ∞
−∞

eiω(x−x′) dω

]
dx′ =

∫ ∞
−∞

f(x′)δ(x− x′) dx′ = f(x)

2.4 Laplace Transform

Laplace transform of f(x) is:

L[f(x)] =

∫ ∞
0

f(x)e−sx dx

L−1[f̄(s)] =
1

2πi

∫ σ+i∞

σ−i∞
f̄(s)esx ds =

∑
s0

Res
s=s0

(f̄(s)esx)

The contour integration is over the vertical line σ + iω and σ is chosen large enough so that all residues are to the
left of the line (that’s because the Laplace transform f̄(s) is only defined for s larger than the residues, so we have to

2.3. Fourier Transform 9
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integrate in this range as well). It can be shown that the integral over the left semicircle goes to zero:∣∣∣∣∫
Ω

esxg(s)ds

∣∣∣∣ =

∣∣∣∣∣
∫ 3π

2

π
2

e(σ+Reiϕ)xg(σ +Reiϕ)iReiϕdϕ

∣∣∣∣∣ ≤
≤ Rmax

Ω
|g(z)|eσx

∫ 3π
2

π
2

∣∣∣exReiϕ∣∣∣dϕ =

= Rmax
Ω
|g(z)|eσx

∫ 3π
2

π
2

exR cosϕdϕ =

= Rmax
Ω
|g(z)|eσx

∫ π

0

e−xR sinϕdϕ =

<
πeσx

x
max

Ω
|g(z)|

so the complex integral is equal to the sum of all residues of f̄(s)esx in the complex plane.

To show that it works:

L−1L[f(x)] =
1

2πi

∫ σ+i∞

σ−i∞

[∫ ∞
0

f(x)e−sx dx

]
esx ds =

1

2πi

∫ σ+i∞

σ−i∞

[∫ ∞
0

f(x′)e−sx
′
dx′
]
esx ds =

=

∫ ∞
0

f(x′)

[
1

2πi

∫ σ+i∞

σ−i∞
es(x−x

′) ds

]
dx′ =

∫ ∞
0

f(x′)δ(x− x′) dx′ = f(x)

where we used:

1

2πi

∫ σ+i∞

σ−i∞
es(x−x

′) ds =
1

2πi

∫ σ+i∞

σ−i∞
es(x−x

′) ds =
1

2πi

∫ ∞
−∞

e(σ+iω)(x−x′) idω =

=
eσ(x−x′)

2π

∫ ∞
−∞

eiω(x−x′) dω = eσ(x−x′)δ(x− x′) = δ(x− x′)

and it can be derived from the Fourier transform by transforming a function U(x):

U(x) =

{
f(x)e−σx for x ≥ 0

0 for x < 0

and making a substitution s = σ + iω:

L[f(x)] ≡ f̄(s) = F [U(x)] ≡ Ũ(ω) =

∫ ∞
−∞

U(x)e−iωx dx =

∫ ∞
0

f(x)e−σxe−iωx dx =

∫ ∞
0

f(x)e−sx dx

L−1[f̄(s)] ≡ f(x) = U(x)eσx = F−1[Ũ(ω)]eσx = F−1[f̄(s)]eσx = F−1[f̄(σ + iω)eσx]

=
1

2π

∫ ∞
−∞

f̄(σ + iω)eσxeiωx dω =
1

2πi

∫ σ+i∞

σ−i∞
f̄(s)esx ds =

∑
s0

Res
s=s0

(f̄(s)esx)

Where the bar (f̄ ) means the Laplace transform and tilde (Ũ ) means the Fourier transform.

2.5 Polar and Spherical Coordinates

Polar coordinates (radial, azimuth) (r, φ) are defined by

x = r cosφ

y = r sinφ

10 Chapter 2. Mathematics
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Spherical coordinates (radial, zenith, azimuth) (ρ, θ, φ):

x = ρ sin θ cosφ

y = ρ sin θ sinφ

z = ρ cos θ

Note: this meaning of (θ, φ) is mostly used in the USA and in many books. In Europe people usually use different
symbols, like (φ, θ), (ϑ, ϕ) and others.

2.6 Argument function, atan2

Argument function arg(z) is any ϕ such that

z = reiϕ

Obviously arg(z) is unique up to any integer multiple of 2π. By taking the principal value of the arg(z) function, e.g.
fixing arg(z) to the interval (−π, π], we get the Arg(z) function:

−π < Argz ≤ π

then arg z = Argz + 2πn, where n = 0,±1,±2, . . . . We can then use the following formula to easily calculate Argz
for any z = x+ iy (except x = y = 0, i.e. z = 0):

Arg(x+ iy) =

{
π y = 0;x < 0;

2 atan y√
x2+y2+x

otherwise

Finally we define atan2(y, x) as:

atan2(y, x) = Arg(x+ iy) =

{
π y = 0;x < 0;

2 atan y√
x2+y2+x

otherwise

The angle φ = atan2(y, x) is the angle of the point (x, y) on the unit circle (assuming the usual conventions), and it
works for all quadrants (φ = atan(y, x) only works for the first and fourth quadrant, where atan(y, x) = atan2(y, x),
but in the second and third qudrant, atan(y, x) gives the wrong angles, while atan2(y, x) gives the correct angles). So
in particular:

atan2(0, 1) = 2 atan
0√

12 + 02 + 1
= 0

atan2(0,−1) = π

atan2(1, 0) = 2 atan
1√

02 + 12 + 0
= 2 atan1 =

π

2

atan2(−1, 0) = 2 atan
−1√

02 + 12 + 0
= −2 atan1 = −π

2

This convention (atan2(y, x)) is used for example in Python, C or Fortran. Some people might interchange x with y
in the definition (i.e. atan2(x, y) = Arg(y + ix)), but it is not very common.

The following useful relations hold:

sin atan2(y, x) =
y√

x2 + y2
except x = y = 0

cos atan2(y, x) =
x√

x2 + y2
except x = y = 0

tan atan2(y, x) =
y

x
for x 6= 0

atan2(ky, kx) = atan2(y, x) for k > 0
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We now prove them. The following works for all x, y except for x = y = 0:

sin atan2(y, x) =

sinπ y = 0;x < 0;

sin

(
2 atan y√

x2+y2+x

)
otherwise

=

=

{
0 y = 0;x < 0;

y√
x2+y2

otherwise
=

=


y√
x2+y2

y = 0;x < 0;

y√
x2+y2

otherwise
=

y√
x2 + y2

cos atan2(y, x) =

cosπ y = 0;x < 0;

cos

(
2 atan y√

x2+y2+x

)
otherwise

=

=

{
−1 y = 0;x < 0;

x√
x2+y2

otherwise
=

=


x√
x2+y2

y = 0;x < 0;

x√
x2+y2

otherwise
=

x√
x2 + y2

Tangent is infinite for ±π2 , which corresponds to x = 0, so the following works for all x 6= 0:

tan atan2(y, x) =

tanπ y = 0;x < 0;

tan

(
2 atan y√

x2+y2+x

)
otherwise

=

=

{
0 y = 0;x < 0;
y
x otherwise

=

=

{
y
x y = 0;x < 0;
y
x otherwise

=
y

x

In the above, we used the following double angle formulas:

sin 2x =
2 tanx

1 + tan2 x

cos 2x =
1− tan2 x

1 + tan2 x

tan 2x =
2 tanx

1− tan2 x

12 Chapter 2. Mathematics



Theoretical Physics Reference, Release 0.1

to simplify the following expressions:

sin

(
2 atan

y√
x2 + y2 + x

)
=

2 tan atan y√
x2+y2+x

1 + tan2 atan y√
x2+y2+x

=

=
2 y√

x2+y2+x

1 +

(
y√

x2+y2+x

)2 =
2y
(√

x2 + y2 + x
)

(√
x2 + y2 + x

)2

+ y2

=

=
y
(√

x2 + y2 + x
)

x2 + y2 + x
√
x2 + y2

=
y
(√

x2 + y2 + x
)

√
x2 + y2

(√
x2 + y2 + x

) =

=
y√

x2 + y2

cos

(
2 atan

y√
x2 + y2 + x

)
=

1− tan2 atan y√
x2+y2+x

1 + tan2 atan y√
x2+y2+x

=

=

1−
(

y√
x2+y2+x

)2

1 +

(
y√

x2+y2+x

)2 =

(√
x2 + y2 + x

)2

− y2(√
x2 + y2 + x

)2

+ y2

=

=
x
(√

x2 + y2 + x
)

x2 + y2 + x
√
x2 + y2

=
x
(√

x2 + y2 + x
)

√
x2 + y2

(√
x2 + y2 + x

) =

=
x√

x2 + y2

tan

(
2 atan

y√
x2 + y2 + x

)
=

2 tan atan y√
x2+y2+x

1− tan2 atan y√
x2+y2+x

=

=
2 y√

x2+y2+x

1−
(

y√
x2+y2+x

)2 =
2y
(√

x2 + y2 + x
)

(√
x2 + y2 + x

)2

− y2

=

=
y
(√

x2 + y2 + x
)

x
(√

x2 + y2 + x
) =

y

x

Finally, for all k > 0 we get:

atan2(ky, kx) = Arg(kx+ iky) =

{
π y = 0;x < 0;

2 atan ky√
(kx)2+(ky)2+kx

otherwise
=

=

{
π y = 0;x < 0;

2 atan y√
x2+y2+x

otherwise
= Arg(x+ iy) = atan2(y, x)
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An example of an application:

A sinx+B cosx =
√
A2 +B2

(
A√

A2 +B2
sinx+

B√
A2 +B2

cosx

)
=

=
√
A2 +B2 (cos δ sinx+ sin δ cosx) =

√
A2 +B2 sin(x+ δ) =

=
√
A2 +B2 sin(x+ atan2(B,A))

where

δ = atan2

(
B√

A2 +B2
,

A√
A2 +B2

)
= atan2(B,A)

2.7 Delta Function

Delta function δ(x) is defined such that this relation holds:∫
f(x)δ(x− t)dx = f(t) (2.1)

No such function exists, but one can find many sequences “converging” to a delta function:

lim
α→∞

δα(x) = δ(x) (2.2)

more precisely:

lim
α→∞

∫
f(x)δα(x)dx =

∫
f(x) lim

α→∞
δα(x)dx = f(t) (2.3)

one example of such a sequence is:

δα(x) =
1

πx
sin(αx)

It’s clear that (2.3) holds for any well behaved function f(x). Some mathematicians like to say that it’s incorrect to use
such a notation when in fact the integral (2.1) doesn’t “exist”, but we will not follow their approach, because it is not
important if something “exists” or not, but rather if it is clear what we mean by our notation: (2.1) is a shorthand for
(2.3) and (2.2) gets a mathematically rigorous meaning when you integrate both sides and use (2.1) to arrive at (2.3).
Thus one uses the relations (2.1), (2.2), (2.3) to derive all properties of the delta function.

Let’s give an example. Let r̂ be the unit vector in 3D and we can label it using spherical coordinates r̂ = r̂(θ, φ). We
can also express it in cartesian coordinates as r̂(θ, φ) = (cosφ sin θ, sinφ sin θ, cos θ).

f(r̂′) =

∫
δ(r̂− r̂′)f(r̂) dr̂ (2.4)

Expressing f(r̂) = f(θ, φ) as a function of θ and φ we have

f(θ′, φ′) =

∫
δ(θ − θ′)δ(φ− φ′)f(θ, φ) dθdφ (2.5)

Expressing (2.4) in spherical coordinates we get

f(θ′, φ′) =

∫
δ(r̂− r̂′)f(θ, φ) sin θ dθdφ

and comparing to (2.5) we finally get

δ(r̂− r̂′) =
1

sin θ
δ(θ − θ′)δ(φ− φ′)

In exactly the same manner we get

δ(r− r′) = δ(r̂− r̂′)
δ(ρ− ρ′)

ρ2

See also (2.6) for an example of how to deal with more complex expressions involving the delta function like δ2(x).
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2.8 Distributions

Some mathematicians like to use distributions and a mathematical notation for that, which I think is making things less
clear, but nevertheless it’s important to understand it too, so the notation is explained in this section, but I discourage
to use it – I suggest to only use the physical notation as explained below. The math notation below is put into quotation
marks, so that it’s not confused with the physical notation.

The distribution is a functional and each function f(x) can be identified with a distribution "Tf " that it generates using
this definition (ϕ(x) is a test function):

"Tf (φ(x))" ≡
∫
f(x)ϕ(x)dx ≡ "f(ϕ(x))" ≡ "(f(x), ϕ(x))"

besides that, one can also define distributions that can’t be identified with regular functions, one example is a delta
distribution (Dirac delta function):

"δ(φ(x))" ≡ φ(0) ≡
∫
δ(x)φ(x)dx

The last integral is not used in mathematics, in physics on the other hand, the first expressions ("δ(φ(x))") is not used,
so δ(x) always means that you have to integrate it, as explained in the previous section, so it behaves like a regular
function (except that such a function doesn’t exist and the precise mathematical meaning is only after you integrate it,
or through the identification above with distributions).

One then defines common operations via acting on the generating function, then observes the pattern and defines it for
all distributions. For example differentiation:

"
d

dx
Tf (ϕ)" = "Tf ′(ϕ)" =

∫
f ′ϕdx = −

∫
fϕ′dx = "−Tf (ϕ′)"

so:

"
d

dx
T (ϕ)" = "−T (ϕ′)"

Multiplication:

"gTf (ϕ)" = "Tgf (ϕ)" =

∫
gfϕdx = "Tf (gϕ)"

so:

"gT (ϕ)" = "T (gϕ)"

Fourier transform:

"FTf (ϕ)" = "TFf (ϕ)" =

∫
F (f)ϕdx =

=

∫ [∫
e−ikxf(k)dk

]
ϕ(x)dx =

∫
f(k)

[∫
e−ikxϕ(x)dx

]
dk =

∫
f(x)

[∫
e−ikxϕ(k)dk

]
dx =

=

∫
fF (ϕ)dx = "Tf (Fϕ)"

so:

"FT (ϕ)" = "T (Fϕ)"

But as you can see, the notation is just making things more complex, since it’s enough to just work with the integrals
and forget about the rest. One can then even omit the integrals, with the understanding that they are implicit.
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Some more examples:∫
δ(x− x0)ϕ(x)dx =

∫
δ(x)ϕ(x+ x0)dx = ϕ(x0) ≡ "δ(ϕ(x+ x0))"

Proof of δ(−x) = δ(x):∫ ∞
−∞

δ(−x)ϕ(x)dx = −
∫ −∞
∞

δ(y)ϕ(−y)dy =

∫ ∞
−∞

δ(x)ϕ(−x)dx ≡ "δ(ϕ(−x))" = ϕ(0) = "δ(φ(x))" ≡
∫ ∞
−∞

δ(x)ϕ(x)dx

Proof of xδ(x) = 0: ∫
xδ(x)ϕ(x)dx = "δ(xϕ(x))" = 0 · ϕ(0) = 0

Proof of δ(cx) = δ(x)
|c| :

∫
δ(cx)ϕ(x)dx =

1

|c|

∫
δ(x)ϕ

(x
c

)
dx = "δ

(
ϕ
(
x
c

)
|c|

)
" =

δ(0)

|c|
= "

δ(ϕ(x))

|c|
" =

∫
δ(x)

|c|
ϕ(x)dx

2.9 Variations and Functional Derivatives

Functional derivatives are a common source of confusion and especially the notation. The reason is similar to the
delta function — the definition is operational, i.e. it tells you what operations you need to do to get a mathematically
precise formula. The notation below is commonly used in physics and in our opinion it is perfectly precise and exact,
but some mathematicians may not like it.

Let’s have x = (x1, x2, . . . , xN ). The function f(x) assigns a number to each x. We define a differential of f as

df ≡ d

dε
f(x + εh)

∣∣∣∣
ε=0

= lim
ε→0

f(x + εh)− f(x)

ε
= a · h

The last equality follows from the fact, that d
dεf(x + εh)

∣∣
ε=0

is a linear function of h. We define ∂f
∂xi

as

a ≡
(
∂f

∂x1
,
∂f

∂x2
, . . . ,

∂f

∂xN

)
This also gives a formula for computing ∂f

∂xi
: we set hj = δijhi and

∂f

∂xi
= ai = a · h =

d

dε
f(x + ε(0, 0, . . . , 1, . . . , 0))

∣∣∣∣
ε=0

=

= lim
ε→0

f(x1, x2, . . . , xi + ε, . . . , xN )− f(x1, x2, . . . , xi, . . . , xN )

ε

But this is just the way the partial derivative is usually defined. Every variable can be treated as a function (very simple
one):

xi = g(x1, . . . , xN ) = δijxj

and so we define

dxi ≡ dg = d(δijxj) = hi
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and thus we write hi = dxi and h = dx and

df =
df

dxi
dxi

So dx has two meanings — it’s either h = x − x0 (a finite change in the independent variable x) or a differential,
depending on the context. Even mathematicians use this notation.

Functional F [f ] assigns a number to each function f(x). The variation is defined as

δF [f ] ≡ d

dε
F [f + εh]

∣∣∣∣
ε=0

= lim
ε→0

F [f + εh]− F [f ]

ε
=

∫
a(x)h(x)dx

We define δF
δf(x) as

a(x) ≡ δF

δf(x)

This also gives a formula for computing δF
δf(x) : we set h(y) = δ(x− y) and

δF

δf(x)
= a(x) =

∫
a(y)δ(x− y)dy =

d

dε
F [f(y) + εδ(x− y)]

∣∣∣∣
ε=0

=

= lim
ε→0

F [f(y) + εδ(x− y)]− F [f(y)]

ε

Every function can be treated as a functional (although a very simple one):

f(x) = G[f ] =

∫
f(y)δ(x− y)dy

and so we define

δf ≡ δG[f ] =
d

dε
G[f(x) + εh(x)]

∣∣∣∣
ε=0

=
d

dε
(f(x) + εh(x))

∣∣∣∣
ε=0

= h(x)

thus we write h = δf and

δF [f ] =

∫
δF

δf(x)
δf(x)dx

so δf have two meanings — it’s either h(x) = d
dε (f(x) + εh(x))

∣∣
ε=0

(a finite change in the function f ) or a variation
of a functional, depending on the context. Some mathematicians don’t like to write δf in the meaning of h(x), they
prefer to write the latter, but it is in fact perfectly fine to use δf , because it is completely analogous to dx.

The correspondence between the finite and infinite dimensional case can be summarized as:

f(xi) ⇐⇒ F [f ]

df = 0 ⇐⇒ δF = 0

∂f

∂xi
= 0 ⇐⇒ δF

δf(x)
= 0

f ⇐⇒ F

xi ⇐⇒ f(x)

x ⇐⇒ f

i ⇐⇒ x
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More generally, δ-variation can by applied to any function g which contains the function f(x) being varied, you just
need to replace f by f + εh and apply d

dε to the whole g, for example (here g = ∂µφ and f = φ):

δ∂µφ =
d

dε
∂µ(φ+ εh)

∣∣∣∣
ε=0

= ∂µ
d

dε
(φ+ εh)

∣∣∣∣
ε=0

= ∂µδφ

This notation allows us a very convinient computation, as shown in the following examples. First, when computing a
variation of some integral, when can interchange δ and

∫
:

F [f ] =

∫
K(x)f(x)dx

δF = δ

∫
K(x)f(x)dx =

d

dε

∫
K(x)(f + εh)dx

∣∣∣∣
ε=0

=

∫
d

dε
(K(x)(f + εh))dx

∣∣∣∣
ε=0

=

=

∫
δ(K(x)f(x))dx

In the expression δ(K(x)f(x)) we must understand from the context if we are treating it as a functional of f or K. In
our case it’s a functional of f , so we have δ(Kf) = Kδf .

A few more examples:

δ

δf(t)

∫
dt′f(t′)g(t′) =

d

dε

∫
dt′(f(t′) + εδ(t− t′))g(t′)

∣∣∣∣
ε=0

= g(t)

δf(t′)

δf(t)
=

d

dε
(f(t′) + εδ(t− t′))

∣∣∣∣
ε=0

= δ(t− t′)

δf(t1)f(t2)

δf(t)
=

d

dε
(f(t1) + εδ(t− t1))(f(t2) + εδ(t− t2))

∣∣∣∣
ε=0

= δ(t− t1)f(t2) + f(t1)δ(t− t2)

δ

δf(t)
1
2

∫
dt1dt2K(t1, t2)f(t1)f(t2) = 1

2

∫
dt1dt2K(t1, t2)

δf(t1)f(t2)

δf(t)
=

= 1
2

(∫
dt1K(t1, t)f(t1) +

∫
dt2K(t, t2)f(t2)

)
=

∫
dt2K(t, t2)f(t2)

The last equality follows from K(t1, t2) = K(t2, t1) (any antisymmetrical part of a K would not contribute to the
symmetrical integration).

Another example is the derivation of Euler-Lagrange equations for the Lagrangian density L = L(ηρ, ∂νηρ, x
ν):

0 = δI = δ

∫
L d4xµ =

∫
∂L d4xµ =

∫
∂L
∂ηρ

δηρ +
∂L

∂(∂νηρ)
δ(∂νηρ) d4xµ =

=

∫
∂L
∂ηρ

δηρ +
∂L

∂(∂νηρ)
∂ν(δηρ) d4xµ =

=

∫
∂L
∂ηρ

δηρ − ∂ν
(

∂L
∂(∂νηρ)

)
δηρ d4xµ +

∫
∂ν

(
∂L

∂(∂νηρ)
δηρ

)
d4xµ =

=

∫ [
∂L
∂ηρ
− ∂ν

(
∂L

∂(∂νηρ)

)]
δηρ d4xµ
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Another example:

δ

δf(t)

∫
f3(x)dx =

d

dε

∫
(f(x) + εδ(x− t))3dx

∣∣∣∣
ε=0

=

=

∫
3(f(x) + εδ(x− t))2δ(x− t)dx

∣∣∣∣
ε=0

=

∫
3f2(x)δ(x− t)dx = 3f2(t)

Some mathematicians would say the above calculation is incorrect, because δ2(x − t) is undefined. But that’s not
exactly true, because in case of such problems the above notation automatically implies working with some sequence
δα(x)→ δ(x) (for example δα(x) = 1

πx sin(αx)) and taking the limit α→∞:

δ

δf(t)

∫
f3(x)dx = lim

α→∞

d

dε

∫
(f(x) + εδα(x− t))3dx

∣∣∣∣
ε=0

=

= lim
α→∞

∫
3(f(x) + εδα(x− t))2δα(x− t)dx

∣∣∣∣
ε=0

= lim
α→∞

∫
3f2(x)δα(x− t)dx =

=

∫
3f2(x) lim

α→∞
δα(x− t)dx =

∫
3f2(x)δ(x− t)dx = 3f2(t) (2.6)

As you can see, we got the same result, with the same rigor, but using an obfuscating notation. That’s why such
obvious manipulations with δα are tacitly implied.

2.10 Spherical Harmonics

Are defined by

Ylm(θ, φ) =

√
2l + 1

4π

(l −m)!

(l +m)!
Pml (cos θ) eimφ

where Pml are associated Legendre polynomials defined by

Pml (x) = (−1)m(1− x2)m/2
dm

dxm
Pl(x)

and Pl are Legendre polynomials defined by the formula

Pl(x) =
1

2ll!

dl

dxl
[(x2 − 1)l]

they also obey the completeness relation

∞∑
l=0

2l + 1

2
Pl(x

′)Pl(x) = δ(x− x′) (2.7)

The spherical harmonics are ortonormal:∫
Ylm Y

∗
l′m′ dΩ =

∫ 2π

0

∫ π

0

Ylm(θ, φ)Y ∗l′m′(θ, φ) sin θ dθ dφ = δmm′δll′ (2.8)

and complete (both in the l-subspace and the whole space):

l∑
m=−l

|Ylm(θ, φ)|2 =
2l + 1

4π
(2.9)
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∞∑
l=0

l∑
m=−l

Ylm(θ, φ)Y ∗lm(θ′, φ′) =
1

sin θ
δ(θ − θ′)δ(φ− φ′) = δ(r̂− r̂′) (2.10)

The relation (2.9) is a special case of an addition theorem for spherical harmonics

l∑
m=−l

Ylm(θ, φ)Y ∗lm(θ′, φ′) =
4π

2l + 1
Pl(cos γ) (2.11)

where γ is the angle between the unit vectors given by r̂ = (θ, φ) and r̂′ = (θ′, φ′):

cos γ = cos θ cos θ′ + sin θ sin θ′ cos(φ− φ′) = r̂ · r̂′

2.11 Dirac Notation

The Dirac notation allows a very compact and powerful way of writing equations that describe a function expansion
into a basis, both discrete (e.g. a fourier series expansion) and continuous (e.g. a fourier transform) and related things.
The notation is designed so that it is very easy to remember and it just guides you to write the correct equation.

Let’s have a function f(x). We define

〈x|f〉 ≡ f(x)

〈x′|f〉 ≡ f(x′)

〈x′|x〉 ≡ δ(x′ − x)∫
|x〉 〈x|dx ≡ 1

The following equation

f(x′) =

∫
δ(x′ − x)f(x)dx

then becomes

〈x′|f〉 =

∫
〈x′|x〉 〈x|f〉dx

and thus we can interpret |f〉 as a vector, |x〉 as a basis and 〈x|f〉 as the coefficients in the basis expansion:

|f〉 = 1 |f〉 =

∫
|x〉 〈x|dx |f〉 =

∫
|x〉 〈x|f〉dx

That’s all there is to it. Take the above rules as the operational definition of the Dirac notation. It’s like with the
delta function - written alone it doesn’t have any meaning, but there are clear and non-ambiguous rules to convert any
expression with δ to an expression which even mathematicians understand (i.e. integrating, applying test functions and
using other relations to get rid of all δ symbols in the expression – but the result is usually much more complicated than
the original formula). It’s the same with the ket |f〉: written alone it doesn’t have any meaning, but you can always
use the above rules to get an expression that make sense to everyone (i.e. attaching any bra to the left and rewriting all
brackets 〈a|b〉 with their equivalent expressions) – but it will be more complex and harder to remember and – that is
important – less general.
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Now, let’s look at the spherical harmonics:

Ylm(r̂) ≡ 〈r̂|lm〉

on the unit sphere, we have ∫
|̂r〉 〈r̂|dr̂ =

∫
|̂r〉 〈r̂|dΩ = 1

δ(r̂− r̂′) = 〈r̂|̂r′〉

thus ∫ 2π

0

∫ π

0

Ylm(θ, φ)Y ∗l′m′(θ, φ) sin θ dθ dφ =

∫
〈l′m′ |̂r〉 〈r̂|lm〉dΩ = 〈l′m′|lm〉

and from (2.8) we get

〈l′m′|lm〉 = δmm′δll′

now ∑
lm

Ylm(θ, φ)Y ∗lm(θ′, φ′) =
∑
lm

〈r̂|lm〉 〈lm|̂r′〉

from (2.10) we get ∑
lm

〈r̂|lm〉 〈lm|̂r′〉 = 〈r̂|̂r′〉

so we have ∑
lm

|lm〉 〈lm| = 1

so |lm〉 forms an orthonormal basis. Any function defined on the sphere f(r̂) can be written using this basis:

f(r̂) = 〈r̂|f〉 =
∑
lm

〈r̂|lm〉 〈lm|f〉 =
∑
lm

Ylm(r̂)flm

where

flm = 〈lm|f〉 =

∫
〈lm|̂r〉 〈r̂|f〉dΩ =

∫
Y ∗lm(r̂)f(r̂)dΩ

If we have a function f(r) in 3D, we can write it as a function of ρ and r̂ and expand only with respect to the variable
r̂:

f(r) = f(ρr̂) ≡ g(ρ, r̂) =
∑
lm

Ylm(r̂)glm(ρ)

In Dirac notation we are doing the following: we decompose the space into the angular and radial part

|r〉 = |̂r〉 ⊗ |ρ〉 ≡ |̂r〉 |ρ〉

and write

f(r) = 〈r|f〉 = 〈r̂| 〈ρ|f〉 =
∑
lm

Ylm(r̂) 〈lm| 〈ρ|f〉
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where

〈lm| 〈ρ|f〉 =

∫
〈lm|̂r〉 〈r̂| 〈ρ|f〉dΩ =

∫
Y ∗lm(r̂)f(r)dΩ

Let’s calculate 〈ρ|ρ′〉

〈r|r′〉 = 〈r̂| 〈ρ|ρ′〉 |̂r′〉 = 〈r̂|̂r′〉 〈ρ|ρ′〉

so

〈ρ|ρ′〉 =
〈r|r′〉
〈r̂|̂r′〉

=
δ(ρ− ρ′)

ρ2

We must stress that |lm〉 only acts in the |̂r〉 space (not the |ρ〉 space) which means that

〈r|lm〉 = 〈r̂| 〈ρ|lm〉 = 〈r̂|lm〉 〈ρ| = Ylm(r̂) 〈ρ|

and V |lm〉 leaves V |ρ〉 intact. Similarly, ∑
lm

|lm〉 〈lm| = 1

is a unity in the |̂r〉 space only (i.e. on the unit sphere).

Let’s rewrite the equation (2.11): ∑
m

〈r̂|lm〉 〈lm|̂r′〉 =
4π

2l + 1
〈r̂ · r̂′|Pl〉

Using the completeness relation (2.7): ∑
l

2l + 1

2
〈x′|Pl〉 〈Pl|x〉 = 〈x′|x〉

∑
l

|Pl〉
2l + 1

2
〈Pl| = 1

we can now derive a very important formula true for every function f(r̂ · r̂′):

f(r̂ · r̂′) = 〈r̂ · r̂′|f〉 =
∑
l

〈r̂ · r̂′|Pl〉
2l + 1

2
〈Pl|f〉 =

∑
lm

〈r̂|lm〉 〈lm|̂r′〉 (2l + 1)2

8π
〈Pl|f〉 =

=
∑
lm

〈r̂|lm〉 fl 〈lm|̂r′〉

where

fl =
(2l + 1)2

8π
〈Pl|f〉 =

(2l + 1)2

8π

∫ 1

−1

〈Pl|x〉 〈x|f〉dx =
(2l + 1)2

8π

∫ 1

−1

Pl(x)f(x)dx

or written explicitly

f(r̂ · r̂′) =

∞∑
l=0

l∑
m=−l

Ylm(r̂)flY
∗
lm(r̂′) (2.12)
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2.12 Homogeneous functions

A function of several variables f(x1, x2, . . . ) ≡ f(xi) is homogeneous of degree k if

f(λxi) = λkf(xi)

By differentiating with respect to λ:

xi
∂f(λxi)

∂xi
= kλk−1f(xi)

and setting λ = 1 we get the so called Euler equation:

xi
∂f(xi)

∂xi
= kf(xi)

in 3D this can also be written as:

x · ∇f(x) = kf(x)

2.12.1 Example

The function f(x, y, z) = xy
z is homogeneous of degree 1, because:

f(λx, λy, λz) =
λxλy

λz
= λ

xy

z
= λf(x, y, z)

and the Euler equation is:

x
∂f

∂x
+ y

∂f

∂y
+ z

∂f

∂z
= f

or

x
y

z
+ y

x

z
+ z

(
−xy
z2

)
=
xy

z

Which obviously is true.

2.13 Differential Geometry

2.13.1 Manifolds

Scalars, Vectors, Tensors

Differentiable manifold U is a space covered by an atlas of maps, each map covers part of the manifold and is a one to
one mapping to an euclidean space Rn:

φ : U → Rn

Let’s have a one-to-one transformation between xµ and x′µ coordinates (we simply write x ≡ xµ, etc.):

x′ = x′(x)

x = x(x′)
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Scalar φ(x) is such a field that transforms as (φ′(x′) is it’s value in x′ coordinates):

φ′(x′) = φ(x)

One form pα(x) is such a field that transforms the same as the gradient ∂φ(x)
∂xµ of a scalar, that transforms as (∂φ

′(x′)
∂x′µ is

it’s value in x′ coordinates):

∂φ′(x′)

∂x′µ
=

∂xν

∂x′µ
∂φ′(x′)

∂xν
=

∂xν

∂x′µ
∂φ(x)

∂xν

so

p′µ(x′) =
∂xν

∂x′µ
pν(x)

Vector V α is such a field that produces a scalar φ = V αpα when contracted with a one form and this fact is used to
deduce how it transforms:

φ′ = V ′αp′α = V ′α
∂xβ

∂x′α
pβ = φ = V βpβ

so we have

V ′α
∂xβ

∂x′α
= V β

multiplying by ∂x′µ

∂xβ
and using the fact that ∂xβ

∂x′α
∂x′µ

∂xβ
= ∂x′µ

∂x′α = δµα we get

V ′µ =
∂x′µ

∂xβ
V β

Higher tensors are build up and their transformation properties derived from the fact, that by contracting with either a
vector or a form we get a lower rank tensor that we already know how it transforms.

Having now defined scalar, vector and tensor fields, one may then choose a basis at each point for each field, the only
requirement being that the basis is not singular. For example for vectors, each point in U has a basis ~eα, so a vector
(field) ~V has components V α with respect to this basis:

~V = V α~eα

Covariant differentiation

The derivative of the basis vector ∂~eα
∂xβ

is a vector, thus it can be written as a linear combination of the basis vectors:

∂~eα
∂xβ

= Γµαβ~eµ

Differentiating a vector is then easy:

∂~V

∂xβ
≡ ∇β ~V =

∂V α

∂xβ
~eα + V α

∂~eα
∂xβ

=
∂V α

∂xβ
~eα + V αΓµαβ~eµ =

(
∂V α

∂xβ
+ ΓαµβV

µ

)
~eα

So we define a covariant derivative:

∇βV α =
∂V α

∂xβ
+ ΓαµβV

µ

24 Chapter 2. Mathematics



Theoretical Physics Reference, Release 0.1

and write

∂~V

∂xβ
= ∇β ~V =

(
∇β ~V

)α
~eα = (∇βV α)~eα

I.e. we have:

∇β ~V = ∇β(V α~eα) = (∇βV α)~eα

We also define:

∇ ~X
~V = ∇Xβ~eβ ~V ≡ X

β∇β ~V = Xβ(∇βV α)~eα

A scalar doesn’t depend on basis vectors, so its covariant derivative is just its partial derivative

∇αφ =
∂φ

∂xα

Differentiating a one form pα is done using the fact, that φ = pαV
α is a scalar, thus

∇βφ =
∂pαV

α

∂xβ
=
∂pα
∂xβ

V α + pα
∂V α

∂xβ
=
∂pα
∂xβ

V α + pα
(
∇βV α − ΓαµβV

µ
)

=

= V α
(
∂pα
∂xβ

− Γµαβpµ

)
+ pα∇βV α = V α∇βpα + pα∇βV α

where we have defined

∇βpα =
∂pα
∂xβ

− Γµαβpµ

This is obviously a tensor, because the above equation has a tensor on the left hand side (∇βφ) and tensors on the right
hand side (pα∇βV α and V α). Similarly for the derivative of the tensor Aµν we use the fact that V µ = Aµνpν is a
vector:

∇βV µ = ∇β(Aµνpν) = ∂β(Aµνpν) + ΓµαβA
ανpν = pν∂βA

µν +Aµν∂βpν + ΓµαβA
ανpν =

= pν∂βA
µν +Aµν

(
∇βpν + Γµνβpµ

)
+ ΓµαβA

ανpν = pν∇βAµν +Aµν∇βpν

where we define

∇βAµν = ∂βA
µν + ΓµαβA

αν + ΓναβA
µα

and so on for other tensors, for example:

∇βAµν = ∂βA
µ
ν + ΓµαβA

α
ν − ΓανβA

µ
α

∇βAµν = ∂βAµν − ΓαµβAαν − ΓανβAµα

One can now easily proof some common relations simply by rewriting it to components and back:

∇ ~X(f ~Y ) = (∇ ~Xf)~Y + f∇ ~X
~Y

∇ ~X(~Y + ~Z) = ∇ ~X
~Y +∇ ~X

~Z

∇f ~X ~Y = f∇ ~X
~Y

Change of variable:

Γ′αβγ =
∂xµ

∂x′β
∂xν

∂x′γ
Γσµν

∂x′α

∂xσ
+
∂x′α

∂xσ
∂2xσ

∂x′β∂x′γ
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Parallel transport

If the vectors ~V at infinitesimally close points of the curve xµ(λ) are parallel and of equal length, then ~V is said to be
parallel transported along the curve, i.e.:

d~V

dλ
= 0

So

d~V

dλ
=

d(V α~eα)

dλ
=

dxβ

dλ
∂β(V α~eα) =

dxβ

dλ
(∇βV α)~eα = 0

In components (using the tangent vector Uβ = dxβ

dλ ):

dV α

dλ
= Uβ∇βV α = 0

Fermi-Walker transport

In local inertial frame:

Uλ0 = (1, 0, 0, 0)

dSi

dt
= 0

We require orthogonality SµUµ = 0, in a general frame:

dSα

dτ
= λUα = Sµ

dUµ

dτ
Uα

where λ was calculated by differentiating the orthogonality condition. This is called a Thomas precession.

For any vector, we define: the vector Xµ is Fermi-Walker tranported along the curve if:

dXµ

dλ
= Xα

dUα

dλ
Uµ −XαU

α dUµ

dλ

If Xµ is perpendicular to Uµ, the second term is zero and the result is called a Fermi transport.

Why: the Uµ is transported by Fermi-Walker and also this is the equation for gyroscopes, so the natural, nonrotating
tetrade is the one with ~eµ0 ≡ Uµ, which is then correctly transported along any curve (not just geodesics).

Geodesics

Geodesics is a curve xα(λ) that locally looks like a line, i.e. it parallel transports its own tangent vector:

Uβ∇βUα = 0

so

Uβ∂βU
α + ΓαβγU

βUγ = 0

or equivalently (using the fact Uβ∂βUα = dxβ

dλ
∂
∂xβ

dxα

dλ = d2xα

dλ2 ):

d2xα

dλ2
+ Γαβγ

dxβ

dλ

dxγ

dλ
= 0
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Curvature

Curvature means that we take a vector V µ, parallel transport it around a closed loop (which is just applying a commu-
tator of the covariant derivatives [∇α,∇β ]V µ), see how it changes and that’s the curvature:

[∇α,∇β ]V µ ≡ RµναβV ν

That’s all there is to it. Expanding the left hand side:

[∇α,∇β ]V µ =
(
∂αΓµβν − ∂βΓµαν + ΓµασΓσβν − ΓµβσΓσαν

)
V ν

we get

Rµναβ = ∂αΓµβν − ∂βΓµαν + ΓµασΓσβν − ΓµβσΓσαν

Lie derivative

Definition of the Lie derivative of any tensor T is:

L~UT = lim
t→0

φt∗T (φt(p))− T (p)

t

it can be shown directly from this definition, that the Lie derivative of a vector is the same as a Lie bracket:

L~U ~V ≡ [~U, ~V ]

and in components

L~UV
α = [~U, ~V ]α ≡ Uβ∇βV α − V β∇βUα = Uβ∂βV

α − V β∂βUα

Lie derivative of a scalar is

L~V f = V µ∂µf

and of a one form pµ is derived using the observation that f = pµV
µ is a scalar:

L~V pµ = V ν∇νpµ + pν∇µV ν = V ν∂νpµ + pν∂µV
ν

and so on for other tensors, for example:

L~V gµν = V α∇αgµν + gαν∇µV α + gµα∇νV α = V α∂αgµν + gαν∂µV
α + gµα∂νV

α

Metric

In general, the Christoffel symbols are not symmetric and there is no metric that generates them. However, if the
manifold is equipped with metrics, then the fundamental theorem of Riemannian geometry states that there is a unique
Levi-Civita connection, for which the metric tensor is preserved by parallel transport:

∇µgαβ = 0

We define the commutation coefficients of the basis cαµν by

cαµν~eα = ∇~eµ~eν −∇~eν~eµ
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In general these coefficients are not zero (as an example, take the units vectors in spherical or cylindrical coordinates),
but for coordinate bases they are. It can be proven, that

Γµαβ = 1
2g
µσ (∂βgσα + ∂αgσβ − ∂σgαβ + cασβ + cβσα − cσαβ)

and for coordinate bases cαµν = 0, so

Γµαβ = Γµβα

Γµαβ = 1
2g
µσ (∂βgσα + ∂αgσβ − ∂σgαβ)

As a special case:

Γµµβ = 1
2g
µσ (∂βgσµ + ∂µgσβ − ∂σgµβ) = 1

2g
µσ∂βgσµ =

= 1
2 Tr g−1∂βg = 1

2 Tr ∂β log g = 1
2∂βTr log g = 1

2∂β log |det g| = ∂β log
√
|det g| =

=
1

2 det g
∂β det g =

1√
|det g|

∂β
√
|det g|

All last 3 expressions are used (but the last one is probably the most common). g is the matrix of coefficients gµν .
At the beginning we used the usual trick that gµσ is symmetric but ∂µgσβ − ∂σgµβ is unsymmetric. Later we used
the identity Tr log g = log |det g|, which follows from the well-known identity det expA = exp TrA by substituting
A = log g and taking the logarithm of both sides.

Diagonal Metric

Many times the metric is diagonal, e.g. in 3D:

gij =

h2
1 0 0

0 h2
2 0

0 0 h2
3


(in general gij = diag(h2

1, h
2
2, . . . )), then the Christoffel symbols Γkij can be calculated very easily (below we do not

sum over i, j and k):

Γkij = 1
2g
kl (∂jgli + ∂iglj − ∂lgij) = 1

2g
kk (∂jgki + ∂igkj − ∂kgij)

If k = i or k = j then

Γkij = Γiij = Γiji = 1
2g
ii (∂jgii + ∂igij − ∂igij) = 1

2g
ii∂jgii = 1

2

1

h2
i

∂jh
2
i =

1

hi
∂jhi (2.13)

otherwise (i.e. k 6= i and k 6= j) then either i = j:

Γkij = Γkii = 1
2g
kk (∂igki + ∂igki − ∂kgii) = − 1

2g
kk∂kgii = − 1

2

1

h2
k

∂kh
2
i = − hi

h2
k

∂khi (2.14)

or i 6= j (i.e. i 6= j 6= k):

Γkij = 1
2g
kk (∂jgki + ∂igkj − ∂kgij) = 0

In other words, the symbols can only be nonzero if at least two of i, j or k are the same and one can use the two
formulas (2.13) and (2.14) to quickly evaluate them. A systematic way to do it is to write (2.13) and (2.14) in the
following form:

Γiij = Γiji =
1

hi
∂jhi i, j arbitrary (2.15)

Γjii = − hi
h2
j

∂jhi i 6= j
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Then find all i and j for which ∂jhi is nonzero and then immediately write all nonzero Christoffel symbols using the
equations (2.15).

For example for cylindrical coordinates we have hρ = hz = 1 and hφ = ρ, so ∂jhi is only nonzero for i = φ and
j = ρ and we get:

Γφφρ = Γφρφ =
1

hφ
∂ρhφ =

1

ρ
∂ρρ =

1

ρ

Γρφφ = −hφ
h2
ρ

∂ρhφ = − ρ

12
∂ρρ = −ρ

all other Christoffel symbols are zero. For spherical coordinates we have hρ = 1, hθ = ρ and hφ = ρ sin θ, so ∂jhi is
only nonzero for i = θ, j = ρ or i = φ, j = ρ or i = φ, j = θ and we get:

Γθθρ = Γθρθ =
1

hθ
∂ρhθ =

1

ρ
∂ρρ =

1

ρ

Γρθθ = −hθ
h2
ρ

∂ρhθ = − ρ

12
∂ρρ = −ρ

Γφφρ = Γφρφ =
1

hφ
∂ρhφ =

1

ρ sin θ
∂ρ(ρ sin θ) =

1

ρ

Γρφφ = −hφ
h2
ρ

∂ρhφ = −ρ sin θ

12
∂ρ(ρ sin θ) = −ρ sin2 θ

Γφφθ = Γφθφ =
1

hφ
∂θhφ =

1

ρ sin θ
∂θ(ρ sin θ) =

cos θ

sin θ

Γθφφ = −hφ
h2
θ

∂θhφ = −ρ sin θ

ρ2
∂θ(ρ sin θ) = − sin θ cos θ

All other symbols are zero.

Symmetries, Killing vectors

We say that a diffeomorphism φ is a symmetry of some tensor T if the tensor is invariant after being pulled back under
φ:

φ∗T = T

Let the one-parameter family of symmetries φt be generated by a vector field V µ(x), then the above equation is
equivalent to:

L~V T = 0

If T is the metric gµν then the symmetry is called isometry and V µ is called a Killing vector field and can be calculated
from:

L~V gµν = V α∇αgµν + gαν∇µV α + gµα∇νV α = ∇µVν +∇νVµ = 0

The last equality is Killing’s equation. If xµ is a geodesics with a tangent vector Uµ and V µ is a Killing vector, then
the quantity VµUµ is conserved along the geodesics, because:

d(VµU
µ)

dλ
= Uν∇ν(VµU

µ) = UνUµ∇νVµ + VµU
ν∇νUµ = 0

where the first term is both symmetric and antisymmetric in (µ, ν), thus zero, and the second term is the geodesics
equation, thus also zero.

2.13. Differential Geometry 29



Theoretical Physics Reference, Release 0.1

Divergence Operator

∇µAµ = ∂µA
µ + ΓµµσA

σ =

= ∂µA
µ +

1√
|det g|

(
∂σ
√
|det g|

)
Aσ =

=
1√
|det g|

∂µ

(√
|det g|Aµ

)
If the metric is diagonal (let’s show this in 3D):

gij =

h2
1 0 0

0 h2
2 0

0 0 h2
3


then √

|det gij | = h1h2h3

gij =


1
h2

1
0 0

0 1
h2

2
0

0 0 1
h2

3


and

∇ ·A = ∇iAi =
1

h1h2h3
∂i
(
h1h2h3A

i
)

Laplace Operator

∇2ϕ = ∇µ∇µϕ = ∂µ∇µϕ+ Γµµσ∇σϕ = ∂µ∂
µϕ+ Γµµσ∂

σϕ =

= ∂µ∂
µϕ+

1√
|det g|

(
∂σ
√
|det g|

)
∂σϕ =

=
1√
|det g|

∂µ

(√
|det g| ∂µϕ

)
=

1√
|det g|

∂µ

(√
|det g| gµσ∂σϕ

)
If the metric is diagonal (let’s show this in 3D):

gij =

h2
1 0 0

0 h2
2 0

0 0 h2
3


then √

|det gij | = h1h2h3

gij =


1
h2

1
0 0

0 1
h2

2
0

0 0 1
h2

3


and

∇2ϕ =
∑
i

1

h1h2h3
∂i

(
h1h2h3

h2
i

∂iϕ

)

30 Chapter 2. Mathematics



Theoretical Physics Reference, Release 0.1

Covariant integration

If f(x) is a scalar, then the integral
∫
f(x)d4x depends on coordinates. The correct way to integrate f(x) in any

coordinates is: ∫
f(x)

√
|g|d4x

where g ≡ det gµν . The Gauss theorem in curvilinear coordinates is:∫
Ω

∇µuµ
√
|g|d4x =

∫
Ω

1√
|g|
∂µ

(√
|g|uµ

)√
|g|d4x =

∫
Ω

∂µ

(√
|g|uµ

)
d4x =

=

∫
∂Ω

√
|g|uµnµd3x =

∫
∂Ω

uµnµ
√
|g|d3x

where ∂Ω is the boundary (surface) of Ω and nν is the normal vector to this surface.

2.13.2 Examples

Weak Formulation of Laplace Equation

As an example, we write the weak formulation of the Laplace equation in arbitrary coordintes:

∇2ϕ− f = 0∫ (
∇2ϕv − fv

)√
|g|d3x = 0∫ (

1√
|g|
∂i

(√
|g|gij∂jϕ

)
v − fv

)√
|g|d3x = 0∫ (

∂i

(√
|g|gij∂jϕ

)
v − fv

√
|g|
)
d3x = 0

Now we apply per-partes (assuming the boundary integral vanishes):∫ (
−
√
|g|gij∂jϕ∂iv − fv

√
|g|
)
d3x = 0∫ (

−gij∂jϕ∂iv − fv
)√
|g|d3x = 0

For diagonal metric this evaluates to:∫ (
−
∑
i

1

h2
i

∂iϕ∂iv − fv

)
h1h2h3d

3x = 0

Cylindrical Coordinates

x = ρ cosφ

y = ρ sinφ

z = z
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The transformation matrix is

∂(x, y, z)

∂(ρ, φ, z)
=

cosφ −ρ sinφ 0
sinφ ρ cosφ 0

0 0 1


The metric tensor of the cartesian coordinate system x̂a = (x, y, z) is ĝab = diag(1, 1, 1), so by transformation we
get the metric tensor gij in the cylindrical coordinates xi = (ρ, φ, z):

gij =
∂x̂a

∂xi
∂x̂b

∂xj
ĝab =

(
∂x̂

∂x

)T
ĝ
∂x̂

∂x
=

=

(
∂(x, y, z)

∂(ρ, φ, z)

)T 1 0 0
0 1 0
0 0 1

 ∂(x, y, z)

∂(ρ, φ, z)
=

=

 cosφ sinφ 0
−ρ sinφ ρ cosφ 0

0 0 1

1 0 0
0 1 0
0 0 1

cosφ −ρ sinφ 0
sinφ ρ cosφ 0

0 0 1

 =

1 0 0
0 ρ2 0
0 0 1



gij =

1 0 0
0 1

ρ2 0

0 0 1


det g = det gij = ρ2

hρ = hz = 1

hφ = ρ

Γφφρ = Γφρφ =
1

hφ
∂ρhφ =

1

ρ
∂ρρ =

1

ρ

Γρφφ = −hφ
h2
ρ

∂ρhφ = − ρ

12
∂ρρ = −ρ

∇ ·A = ∇iAi =
1

h1h2h3
∂i
(
h1h2h3A

i
)

=
1

ρ
∂i
(
ρAi

)
=

=
1

ρ
∂ρ(ρA

ρ) + ∂θA
θ + ∂zA

z = ∂ρA
ρ +

1

ρ
Aρ + ∂θA

θ + ∂zA
z

∇2ϕ = ∇i∇iϕ =
1√
|det g|

∂i

(√
|det g| gij∂jϕ

)
=

=
1

ρ
∂i
(
ρgij∂jϕ

)
=

1

ρ
∂ρ (ρ∂ρϕ) +

1

ρ
∂φ

(
ρ

1

ρ2
∂φϕ

)
+

1

ρ
∂z (ρ∂zϕ) =

=
1

ρ
∂ρ (ρ∂ρϕ) +

1

ρ2
∂φ∂φϕ+ ∂z∂zϕ =

= ∂ρ∂ρϕ+
1

ρ
∂ρϕ+

1

ρ2
∂φ∂φϕ+ ∂z∂zϕ

As a particular example, let’s write the Laplace equation with nonconstant conductivity for axially symmetric field.
The Laplace equation is:

∇ · σ∇ϕ = 0
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so we use the formulas above to get:

0 = ∇ · σ∇ϕ = ∇iσ∇iϕ =
∂

∂ρ
σ
∂ϕ

∂ρ
+

1

ρ2

∂

∂φ
σ
∂ϕ

∂φ
+

∂

∂z
σ
∂ϕ

∂z
+
σ

ρ

∂ϕ

∂ρ

but we know that ϕ = ϕ(ρ, z), so ∂ϕ
∂φ = 0 and the final equation is:

∂

∂ρ
σ
∂ϕ

∂ρ
+

∂

∂z
σ
∂ϕ

∂z
+
σ

ρ

∂ϕ

∂ρ
= 0

To write the weak formulation for it, we need to integrate covariantly (e.g. ρdρdφdz in our case) and rewrite it using
per partes. We did exactly this in the previous example in a coordinate free maner, so we just use the final formula we
got there for a diagonal metric:∫ (

−∂ρϕ∂ρv −
1

ρ2
∂φϕ∂φv − ∂zϕ∂zv

)
σρdρdφdz = 0

and for ∂φϕ = 0, we get:

−2π

∫
(∂ρϕ∂ρv + ∂zϕ∂zv)σρdρdz = 0

Spherical Coordinates

x = ρ sin θ cosφ

y = ρ sin θ sinφ

z = ρ cos θ

The transformation matrix is

∂(x, y, z)

∂(ρ, θ, φ)
=

sin θ cosφ ρ cos θ cosφ −ρ sin θ sinφ
sin θ sinφ ρ cos θ sinφ ρ sin θ cosφ

cosφ −ρ sin θ 0


The metric tensor of the cartesian coordinate system x̂a = (x, y, z) is ĝab = diag(1, 1, 1), so by transformation we
get the metric tensor gij in the spherical coordinates xi = (ρ, θ, φ):

gij =
∂x̂a

∂xi
∂x̂b

∂xj
ĝab =

(
∂x̂

∂x

)T
ĝ
∂x̂

∂x
=

=

(
∂(x, y, z)

∂(ρ, θ, φ)

)T 1 0 0
0 1 0
0 0 1

 ∂(x, y, z)

∂(ρ, θ, φ)
=

=

 sin θ cosφ sin θ sinφ cos θ
ρ cos θ cosφ ρ cos θ sinφ −ρ sin θ
−ρ sin θ sinφ ρ sin θ cosφ 0

1 0 0
0 1 0
0 0 1

sin θ cosφ ρ cos θ cosφ −ρ sin θ sinφ
sin θ sinφ ρ cos θ sinφ ρ sin θ cosφ

cosφ −ρ sin θ 0

 =

=

1 0 0
0 ρ2 0
0 0 ρ2 sin2 θ


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gij =

1 0 0
0 1

ρ2 0

0 0 1
ρ2 sin2 θ


det g = det gij = ρ4 sin2 θ

∇i∇iϕ = ∂i∂iϕ+
1

2 det g
∂j(det g) gjk∂kϕ =

= gij∂i∂jϕ+
1

2ρ4 sin2 θ

(
∂ρ(ρ

4 sin2 θ) gρρ∂ρϕ+ ∂θ(ρ
4 sin2 θ) gθθ∂θϕ

)

= gij∂i∂jϕ+
2

ρ
∂ρϕ+

cos θ

ρ2 sin θ
∂θϕ =

= ∂ρ∂ρϕ+
1

ρ2
∂θ∂θϕ+

1

ρ2 sin2 θ
∂φ∂φϕ+

2

ρ
∂ρϕ+

cos θ

ρ2 sin θ
∂θϕ

Rotating Disk

Let’s have a laboratory Euclidean system xµ = (t, x, y, z) and a rotating disk system x′µ = (t′, x′, y′, z′). The relation
between the frames is

t′

x′

y′

z′

 =


1 0 0 0
0 cosωt sinωt 0
0 − sinωt cosωt 0
0 0 0 1



t
x
y
z

 =


t

x cosωt+ y sinωt
−x sinωt+ y cosωt

z


The inverse transformation can be calculated by simply inverting the matrix:

t
x
y
z

 =


1 0 0 0
0 cosωt′ − sinωt′ 0
0 sinωt′ cosωt′ 0
0 0 0 1



t′

x′

y′

z′


so the transformation matrices are:

∂x′µ

∂xν
=


1 0 0 0

−xω sinωt+ yω cosωt cosωt sinωt 0
−xω cosωt− yω sinωt − sinωt cosωt 0

0 0 0 1

 =
∂x′

∂x

∂xν

∂x′µ
=


1 0 0 0

−x′ω sinωt′ − y′ω cosωt′ cosωt′ − sinωt′ 0
x′ω cosωt′ − y′ω sinωt′ sinωt′ cosωt′ 0

0 0 0 1

 =
∂x

∂x′

The problem now is that Newtonian mechanics has a degenerated spacetime metrics (see later). Let’s pretend we have
the following metrics in the xµ system:

gµν =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 = g
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and

g′αβ =
∂xµ

∂x′α
∂xν

∂x′β
gµν =

(
∂x

∂x′

)T
g

(
∂x

∂x′

)
=


1 + ω2(x′2 + y′2) −ωy′ ωx′ 0

−ωy′ 1 0 0
ωx′ 0 1 0
0 0 0 1

 = g′

However, if we calculate with the correct special relativity metrics:

gµν =


−c2 0 0 0

0 1 0 0
0 0 1 0
0 0 0 1

 = g

and

g′αβ =
∂xµ

∂x′α
∂xν

∂x′β
gµν =

(
∂x

∂x′

)T
g

(
∂x

∂x′

)
=


−c2 + ω2(x′2 + y′2) −ωy′ ωx′ 0

−ωy′ 1 0 0
ωx′ 0 1 0
0 0 0 1

 = g′

We get the same Christoffel symbols as with the diag(1, 1, 1, 1) metrics, because only the derivatives of the metrics
are important. Then the only nonzero Christoffel symbols are

Γ1
00 = −x′ω2

Γ1
02 = Γ1

20 = −ω

Γ2
00 = −y′ω2

Γ2
01 = Γ2

10 = ω

If we want to avoid dealing with metrics, it is possible to start with the Christoffel symbols in the xµ system:

Γσµν = 0

and then transforming them to the x′µ system using the change of variable formula:

Γ′αβγ =
∂xµ

∂x′β
∂xν

∂x′γ
Γσµν

∂x′α

∂xσ
+
∂x′α

∂xσ
∂2xσ

∂x′β∂x′γ
=
∂x′α

∂xσ
∂2xσ

∂x′β∂x′γ

As an example, let’s calculate the coefficients above:

Γ′200 =
∂x′2

∂xσ
∂2xσ

∂x′0∂x′0
=
∂x′2

∂xσ
∂

∂x′0
∂xσ

∂x′0
=

=
(
−xω cosωt− yω sinωt − sinωt cosωt 0

) ∂

∂t′


1

−x′ω sinωt′ − y′ω cosωt′

x′ω cosωt′ − y′ω sinωt′

0

 =

=
(
−xω cosωt− yω sinωt − sinωt cosωt 0

)
0

−x′ω2 cosωt′ + y′ω2 sinωt′

−x′ω2 sinωt′ − y′ω2 cosωt′

0

 = −y′ω2
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Γ′100 = −x′ω2

Γ′201 = Γ′210 =
∂x′2

∂xσ
∂2xσ

∂x′0∂x′1
=
∂x′2

∂xσ
∂

∂x′0
∂xσ

∂x′1
=

=
(
−xω cosωt− yω sinωt − sinωt cosωt 0

) ∂

∂t′


0

cosωt′

sinωt′

0

 =

=
(
−xω cosωt− yω sinωt − sinωt cosωt 0

)
0

−ω sinωt′

ω cosωt′

0

 = ω

Γ′102 = Γ′120 = −ω

So we got the same results.

Now let’s see what we have got. Later we’ll show, that the Γi00 coefficients are just ∂iφ in the Newtonian theory. E.g.
in our case we have:

Γ′100 = −x′ω2 = ∂′xφ

Γ′200 = −y′ω2 = ∂′yφ

Γ′300 = 0 = ∂′zφ

from which:

φ(t, x, y, z) = − 1
2 (x′2 + y′2)ω2 + C(t)

and the force acting on a test particle is then:

F = −m∇φ = m (x′, y′, 0)ω2 = mr′ω2

where we have defined r′ = (x′, y′, 0). This is just the centrifugal force. Also observe, that we could have read φ
directly from the metrics itself — just compare it to the Lorentzian metrics (with gravitation) in the next chapter.

The other two terms (Γ′102, Γ′201 and the symmetric ones) don’t behave as a gravitational force, but rather only act when
we are differentiating (e.g. only act on moving bodies). Below we show this is just the −2ω × dr

dt term (responsible
for the Coriolis acceleration).

Let’s write the full equations of geodesics:

d2x0

dλ2
= 0

d2x1

dλ2
+ Γ1

00

(
dx0

dλ

)2

+ 2Γ1
20

dx2

dλ

dx0

dλ
= 0

d2x2

dλ2
+ Γ2

00

(
dx0

dλ

)2

+ 2Γ2
10

dx1

dλ

dx0

dλ
= 0
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d2x3

dλ2
= 0

This becomes:

d2x

dt2
= xω2 + 2ω

dy

dt

d2y

dt2
= yω2 − 2ω

dx

dt

d2z

dt2
= 0

we can define r = (x, y, 0) and ω = (0, 0, ω). Then the above equations can be rewritten as:

d2r

dt2
= rω2 − 2ω × dr

dt

So we get two fictituous forces, the centrifugal force and the Coriolis force.

Now imagine a static vector in the xµ system along the x axis, i.e.

V µ =


1
1
0
0

 = V

then

V ′µ =
∂x′µ

∂xα
V α =

∂x′

∂x
V =


1

−xω sinωt+ yω cosωt+ cosωt
−xω cosωt− yω sinωt− sinωt

0

 =


1

y′ω + cosωt′

−x′ω − sinωt′

0

 = V ′

In the last equality we transformed from xµ to x′µ using the relation between frames.

Differentiating any vector in the xµ coordinates is easy – it’s just a partial derivative (due to the Euclidean metrics).
Let’s differentiate any vector in the x′µ coordinates with respect to time (since t = t′, the time is the same in both
coordinate systems):

∇0V
′µ = ∂0V

′µ + Γµ0αV
′α

∇0


V ′0

V ′1

V ′2

V ′3

 =


∂0V

′0

∂0V
′1 + Γ1

00V
′0 + Γ1

02V
′2

∂0V
′2 + Γ2

00V
′0 + Γ2

01V
′1

∂0V
′3

 =


∂0V

′0

∂0V
′1 − x′ω2V ′0 − ωV ′2

∂0V
′2 − y′ω2V ′0 + ωV ′1

∂0V
′3

 =

= ∂0


V ′0

V ′1

V ′2

V ′3

+


0 0 0 0

−x′ω2 0 −ω 0
−y′ω2 ω 0 0

0 0 0 0



V ′0

V ′1

V ′2

V ′3

 (2.16)

For our particular (static) vector this yields:

∇0


1

y′ω + cosωt′

−x′ω − sinωt′

0

 =


0
0
0
0


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as expected, because it was at rest in the xµ system. Let’s imagine a static vector in the x′µ system along the x′ axis,
i.e.

W ′µ =


1
1
0
0



Wµ =
∂xµ

∂x′α
W ′α =


1

−x′ω sinωt′ − y′ω cosωt′ + cosωt′

x′ω cosωt′ − y′ω sinωt′ + sinωt′

0

 =


1

−yω + cosωt
xω + sinωt

0


then

∇0W
′µ = ∇0


1
1
0
0

 =


0

−x′ω2

−y′ω2 + ω
0



∇0W
µ = ∂0


1

−yω + cosωt
xω + sinωt

0

 =


0

−ω sinωt
ω cosωt

0

 =


0 0 0 0
0 0 −ω 0
0 ω 0 0
0 0 0 0




0
cosωt
sinωt

0

 = ω ×W

Similarly

∇0∇0W
′µ ==


0

−y′ω3 − ω2

−x′ω3

0



∇0∇0W
µ ==


0

−ω2 cosωt
−ω2 sinωt

0


How can one prove the relation:

dA

dt
= ω ×A +

d′A

dt
(2.17)

that is used for example to derive the Coriolis acceleration etc.? We need to write it components to understand what it
really means:

∇0


A′0

A′1

A′2

A′3

 =


0 0 0 0
0 0 −ω 0
0 ω 0 0
0 0 0 0



A′0

A′1

A′2

A′3

+ ∂0


A′0

A′1

A′2

A′3


Comparing to the covariant derivative above, it’s clear that they are equal (provided that x′ = 0 and y′ = 0, i.e. we are
at the center of rotation).

Let’s show the derivation by Goldstein. The change in a time dt of a general vector G as seen by an observer in the
body system of axes will differ from the corresponding change as seen by an observer in the space system:

(dG)space = (dG)body + (dG)rot
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Now consider a vector fixed in the rigid body. Then (dG)body = 0 and

(dG)rot = (dG)space = dΩ×G

For an arbitrary vector, the change relative to the space axes is the sum of the two effects:

(dG)space = (dG)body + dΩ×G

A more rigorous derivation of the last equation follows from:

Gi = ajiG
′
j

dGi = ajidG
′
j + dajiG

′
j

Let’s make the space and body instantaneously coincident at time t, then aji = δji and daji = −εijkdΩk = εikjdΩk,
so we get the same equation as earlier:

dGi = dG′i + εikjdΩkG
′
j

Anyhow, introducing ω by:

ω =
dΩ

dt

we get (
dG

dt

)
space

=

(
dG

dt

)
body

+ ω ×G

Linear Elasticity Equations in Cylindrical Coordinates

Authors: Pavel Solin & Lenka Dubcova

In this paper we derive the weak formulation of linear elasticity equations suitable for the finite element discretization
of axisymmetric 3D problems.

Original equations in Cartesian coordinates

Let’s start with some notations: By u = (u1, u2, u3)T we denote the displacement vector in 3D Cartesian coordinates,
and by ε the tensor of small deformations,

εij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
, 1 ≤ i, j ≤ 3.

The stress tensor σ has the form

σij = λδijdivu+ 2µεij , 1 ≤ i, j ≤ 3, (2.18)

where

divu =

3∑
k=1

∂uk
∂xk

=

3∑
k=1

εkk = Tr(ε).

The symbols λ and µ are the Lam’e constants and δij is the Kronecker symbol (δij = 1 if i = j and δij = 0 otherwise).
The equilibrium equations have the form

3∑
j=1

∂σij
∂xj

+ fi = 0, 1 ≤ i ≤ 3, (2.19)
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where (f1, f2, f3)T is the vector of internal forces (such as gravity).

The boundary conditions for linear elasticity are given by

ui = ûi on Γ1

3∑
j=1

σijnj = gi on Γ2,

where gi are surface forces.

Weak formulation

Multiplying by test functions and integrating over the domain Ω we obtain

−
∫

Ω

3∑
j=1

∂σij
∂xj

vi =

∫
Ω

fi vi, 1 ≤ i ≤ 3. (2.20)

Using Green’s theorem and the boundary conditions∫
Ω

3∑
j=1

σij
∂vi
∂xj
−
∫
∂Ω

3∑
j=1

σijnjvi =

∫
Ω

fi vi, 1 ≤ i ≤ 3.

Thus ∫
Ω

3∑
j=1

σij
∂vi
∂xj
−
∫

Γ2

givi =

∫
Ω

fi vi, 1 ≤ i ≤ 3. (2.21)

Let us write the equations (2.21) in detail using relation (2.18)∫
Ω

[
λdivu+ 2µ

∂u1

∂x1

]
∂v1

∂x1
+ µ

(
∂u1

∂x2
+
∂u2

∂x1

)
∂v1

∂x2
+ µ

(
∂u1

∂x3
+
∂u3

∂x1

)
∂v1

∂x3
−
∫

Γ2

g1v1 =

∫
Ω

f1 v1,∫
Ω

µ

(
∂u1

∂x2
+
∂u2

∂x1

)
∂v2

∂x1
+

[
λdivu+ 2µ

∂u2

∂x2

]
∂v2

∂x2
+ µ

(
∂u2

∂x3
+
∂u3

∂x2

)
∂v2

∂x3
−
∫

Γ2

g2v2 =

∫
Ω

f2 v2,∫
Ω

µ

(
∂u1

∂x3
+
∂u3

∂x1

)
∂v3

∂x1
+ µ

(
∂u2

∂x3
+
∂u3

∂x2

)
∂v3

∂x2
+

[
λdivu+ 2µ

∂u3

∂x3

]
∂v3

∂x3
−
∫

Γ2

g3v3 =

∫
Ω

f3 v3.

Elementary transformation relations

First let us show how the partial derivatives of a scalar function g are transformed from Cartesian coordinates x1, x2, x3

to cylindrical coordinates r, φ, z. Note that

x1(r, φ) = r cosφ, x2(r, φ) = r sinφ, x3(z) = z.

Since

g(x1, x2, x3) = g(x1(r, φ), x2(r, φ), x3(z)),

it is

∂g

∂r
=

∂g

∂x1
cosφ+

∂g

∂x2
sinφ,

∂g

∂φ
=

∂g

∂x1
(−r sinφ) +

∂g

∂x2
r cosφ,

∂g

∂z
=

∂g

∂x3
.
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From here we obtain
∂g

∂x1
=

∂g

∂r
cosφ− 1

r

∂g

∂φ
sinφ,

∂g

∂x2
=

∂g

∂r
sinφ+

1

r

∂g

∂φ
cosφ,

∂g

∂x3
=

∂g

∂z
.

The relations between displacement components in Cartesian and cylindrical coordinates are

u1 = ur cosφ,

u2 = ur sinφ,

u3 = uz.

The same relations hold for surface forces gi and volume forces fi.

Applying (??) to u1, we obtain

∂u1

∂x1
=

∂u1

∂r
cosφ− 1

r

∂u1

∂φ
sinφ,

∂u1

∂x2
=

∂u1

∂r
sinφ+

1

r

∂u1

∂φ
cosφ,

∂u1

∂x3
=

∂u1

∂z
.

Using (??) and the fact that ur does not depend on φ, this yields

∂u1

∂x1
=

∂ur
∂r

cos2 φ+
1

r
ur sin2 φ,

∂u1

∂x2
=

∂ur
∂r

cosφ sinφ− 1

r
ur cosφ sinφ,

∂u1

∂x3
=

∂ur
∂z

cosφ.

Analogously, for u2 we calculate

∂u2

∂x1
=

∂ur
∂r

cosφ sinφ− 1

r
ur cosφ sinφ,

∂u2

∂x2
=

∂ur
∂r

sin2 φ+
1

r
ur cos2 φ,

∂u2

∂x3
=

∂ur
∂z

sinφ.

For u3, using that it does not depend on φ, we have

∂u3

∂x1
=

∂uz
∂r

cosφ,

∂u3

∂x2
=

∂uz
∂r

sinφ,

∂u3

∂x3
=

∂uz
∂z

.

For further reference, transform also divu into cylindrical coordinates

divu =
∂u1

∂x1
+
∂u2

∂x2
+
∂u3

∂x3
=

=
∂ur
∂r

cos2 φ+
1

r
ur sin2 φ+

∂ur
∂r

sin2 φ+
1

r
ur cos2 φ+

∂uz
∂z

=

=
∂ur
∂r

+
1

r
ur +

∂uz
∂z
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Axisymmetric formulation

Assuming that the domain Ω is axisymmetric, we can begin to transform the integrals in (??) to cylindrical coordinates.
Recall that the Jacobian of the transformation is J(r, φ, z) = r. The first equation in (??) has the form:∫

Ω

r

[
λ(
∂ur
∂r

+
1

r
ur +

∂uz
∂z

) + 2µ(
∂ur
∂r

cos2 φ+
1

r
ur sin2 φ)

]
(
∂vr
∂r

cos2 φ+
1

r
vr sin2 φ) +

r2µ

(
∂ur
∂r

cosφ sinφ− 1

r
ur cosφ sinφ

)(
∂vr
∂r

cosφ sinφ− 1

r
vr cosφ sinφ

)
+

rµ

(
∂ur
∂z

cosφ+
∂uz
∂r

cosφ

)
∂vr
∂z

cosφ−
∫

Γ2

rgrvrcos2φ =

∫
Ω

rfr vr cos2 φ,

The second equation in (??) has the form:∫
Ω

r2µ

(
∂ur
∂r

cosφ sinφ− 1

r
ur cosφ sinφ

)(
∂vr
∂r

cosφ sinφ− 1

r
vr cosφ sinφ

)
+

r

[
λ(
∂ur
∂r

+
1

r
ur +

∂uz
∂z

) + 2µ(
∂ur
∂r

sin2 φ+
1

r
ur cos2 φ)

]
(
∂vr
∂r

sin2 φ+
1

r
vr cos2 φ) +

rµ

(
∂ur
∂z

sinφ+
∂uz
∂r

sinφ

)
(
∂vr
∂z

sinφ)−
∫

Γ2

rgrvr sin2 φ =

∫
Ω

rfr vr sin2 φ,

Adding these two equations together we get∫
Ω

rλ(
∂ur
∂r

+
1

r
ur +

∂uz
∂z

)(
∂vr
∂r

+
1

r
vr) +∫

Ω

rµ

[
2

(
∂ur
∂r

∂vr
∂r

cos4 φ+
1

r
ur
∂vr
∂r

sin2 φ cos2 φ+
1

r

∂ur
∂r

vr sin2 φ cos2 φ+
1

r2
urvr sin4 φ

)
+

2

(
∂ur
∂r

∂vr
∂r

sin4 φ+
1

r
ur
∂vr
∂r

sin2 φ cos2 φ+
1

r

∂ur
∂r

vr sin2 φ cos2 φ+
1

r2
urvr cos4 φ

)
+

4

(
∂ur
∂r

∂vr
∂r

cos2 φ sin2 φ− 1

r
ur
∂vr
∂r

cos2 φ sin2 φ− 1

r

∂ur
∂r

vr cos2 φ sin2 φ+
1

r2
urvr cos2 φ sin2 φ

)
+(

∂ur
∂z

∂vr
∂z

+
∂uz
∂r

∂vr
∂z

)]
−
∫

Γ2

grvrr =

∫
Ω

fr vrr

This can be simplified to∫
Ω

rλ(
∂ur
∂r

+
1

r
ur +

∂uz
∂z

)(
∂vr
∂r

+
1

r
vr) +

∫
Ω

rµ

[
2

(
∂ur
∂r

∂vr
∂r

+
1

r2
urvr

)
+

(
∂ur
∂z

∂vr
∂z

+
∂uz
∂r

∂vr
∂z

)]

−
∫

Γ2

grvrr =

∫
Ω

fr vrr

Finally, the third equation in (??) has the form∫
Ω

rµ

(
∂ur
∂z

cosφ+
∂uz
∂r

cosφ

)
∂vz
∂r

cosφ+ rµ

(
∂ur
∂z

sinφ+
∂uz
∂r

sinφ

)
∂vz
∂r

sinφ+

r

[
λ(
∂ur
∂r

+
1

r
ur +

∂uz
∂z

) + 2µ
∂uz
∂z

]
∂vz
∂z
−
∫

Γ2

gzvzr =

∫
Ω

fz vzr.

This gives us∫
Ω

rµ

(
∂ur
∂z

∂vz
∂r

+
∂uz
∂r

∂vz
∂r

+ 2
∂uz
∂z

∂vz
∂z

)
+ rλ

(
∂ur
∂r

+
1

r
ur +

∂uz
∂z

)
∂vz
∂z
−
∫

Γ2

gzvzr =

∫
Ω

fz vzr.
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Since the integrands do not depend on φ, we can simplify this to integral over Ω0, where Ω0 is the intersection of the
domain Ω with the x+

1 x3 half-plane. Dividing both equations by 2π we get∫
Ω0

rλ(
∂ur
∂r

+
1

r
ur +

∂uz
∂z

)(
∂vr
∂r

+
1

r
vr) +

∫
Ω0

rµ

[
2

(
∂ur
∂r

∂vr
∂r

+
1

r2
urvr

)
+

(
∂ur
∂z

∂vr
∂z

+
∂uz
∂r

∂vr
∂z

)]

−
∫

Γ2

grvrr =

∫
Ω0

fr vrr

∫
Ω0

rµ

(
∂ur
∂z

∂vz
∂r

+
∂uz
∂r

∂vz
∂r

+ 2
∂uz
∂z

∂vz
∂z

)
+ rλ

(
∂ur
∂r

+
1

r
ur +

∂uz
∂z

)
∂vz
∂z
−
∫

Γ2

gzvzr =

∫
Ω0

fz vzr.

Coordinate Independent Way

Let’s write the elasticity equations in the cartesian coordinates again:

σij = λδij∂ku
k + µ(∂jui + ∂iuj)

∂jσ
ij + f i = 0

Those only work in the cartesian coordinates, so we first write them in a coordinate independent way:

σij = λgij∇kuk + µ(∇jui +∇iuj)
∇jσij + f i = 0

so:

∇j
(
λgij∇kuk + µ(∇jui +∇iuj)

)
+ f i = 0

The weak formulation is then (do not sum over i):

−
∫
∇j
(
λgij∇kuk + µ(∇jui +∇iuj)

)
vi
√
|g|d3x =

∫
f ivi

√
|g|d3x

We apply the integration by parts:∫ (
λgij∇kuk + µ(∇jui +∇iuj)

)
∇jvi

√
|g|d3x =

∫
f ivi

√
|g|d3x
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This is the weak formulation valid in any coordinates. Using the cylindrical coordinates (see above) we get:

x = (ρ, φ, z)

d3x = dρdφdz

gij =

1 0 0
0 1

ρ2 0

0 0 1


√
|g| =

√
|det gij | = ρ

∇kuk =
1√
|g|
∂k(
√
|g|uk) =

1

ρ
∂k(ρuk) =

=
1

ρ
uρ + ∂ρu

ρ + ∂φu
φ + ∂zu

z

(∇juz +∇zuj)∇jvz = (gjk∇kuz + gzk∇kuj)∇jvz = (∂ρu
z + ∂zu

ρ)∂ρv
z + (∂zu

z + ∂zu
z)∂zv

z =

= (∂ρu
z + ∂zu

ρ)∂ρv
z + 2∂zu

z∂zv
z

gρj∇jvρ = gρρ∇ρvρ = ∂ρv
ρ + Γρkρv

k = ∂ρv
ρ +

1

ρ
vφ

gφj∇jvφ = gφφ∇φvφ =
1

ρ2
(∂φv

φ + Γφkφv
k) =

1

ρ2
(∂φv

φ +
1

ρ
vρ) =

gzj∇jvz = gzz∇zvz = ∂zv
z + Γzkzv

k = ∂zv
z∫ (

λgij
(

1

ρ
uρ + ∂ρu

ρ + ∂φu
φ + ∂zu

z

)
+ µ(∇jui +∇iuj)

)
∇jviρdρ dφ dz =

∫
f iviρdρdφdz

for i = 1, 2, 3 we get:∫
λ

(
1

ρ
uρ + ∂ρu

ρ + ∂φu
φ + ∂zu

z

)(
∂ρv

ρ +
1

ρ
vφ
)
ρ+ µ (2∂ρu

ρ∂ρv
ρ + (∂zu

ρ + ∂ρu
z)∂zv

ρ) ρ dρdφdz =

∫
fρvρρ dρ dφ dz∫

λ

(
1

ρ
uρ + ∂ρu

ρ + ∂φu
φ + ∂zu

z

)
1

ρ2

(
∂φv

φ +
1

ρ
vρ
)
ρ+ µ (2∂ρu

ρ∂ρv
ρ + (∂zu

ρ + ∂ρu
z)∂zv

ρ) ρdρdφ dz =

∫
fφvφρdρdφdz∫

λ

(
1

ρ
uρ + ∂ρu

ρ + ∂φu
φ + ∂zu

z

)
∂zv

zρ+ µ ((∂ρu
z + ∂zu

ρ)∂ρv
z + 2∂zu

z∂zv
z) ρ dρ dφdz =

∫
fzvzρdρdφ dz
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CHAPTER

THREE

CLASSICAL MECHANICS, SPECIAL
AND GENERAL RELATIVITY

3.1 Newtonian Physics

3.1.1 Introduction: Why Tensors

This section gives a brief introduction, and in the next sections we derive everything in detail. The Newton law is:

m
d2x

dt2
= F

and using a potential for F, we get:

d2x

dt2
= −∇φ

d2xi

dt2
= −∂iφ

the last two equations are two different equivalent ways to write a tensor equation in 3D, which means that this equation
has the exact same form (is valid) in any (spatial) coordinate system (rotated, translated, in cartesian coordinates,
spherical coordinates, ...). Each coordinate system has a different metric, but we can always locally transform into
gij = diag(1, 1, 1).

However, if our coordinate transformation depends on time (e.g. a rotating disk), then the above tensor equation
changes (e.g. for the rotating disk, we get the Coriolis acceleration term), that’s because time is treated as a parameter,
not as a coordinate.

To fix this, we need to work in 4D and treat time as a coordinate, so we introduce x0 = ct where c is any constant
speed (it can be any speed, doesn’t have to be the speed of light). Then in 4D, the above equations are not tensor
equations anymore, because the operator d

dt = c∂0 is not a tensor. The 4D tensor formulation happens to be the
geodesic equation:

dxβ

dλ
∇β

dxα

dλ
= 0

R00 = 4πGρ

Rij = 0

Which (given that we know how to calculate the Ricci tensor in our coordinates) is valid in any coordinates, not only
rotated, translated, cartesian, spherical, ..., but also with arbitrary time dependence, e.g. a rotating disk, accelerating
disk, ...
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After suitable local coordinate transformation, we can only get two possible metrics (that connect the time and spatial
coordinates): diag(−1, 1, 1, 1) and diag(1, 1, 1, 1). Inertial systems have no fictitious forces, so the metrics is one of
the two above (possibly with c → ∞). Transformation between inertial systems is such a coordinate transformation
that leaves the metric intact, e.g.:

g′ = ΛT gΛ

There is no coordinate transformation that turns the metric diag(−1, 1, 1, 1) into diag(1, 1, 1, 1), so we need to choose
either one to describe one inertial system and then all other inertial systems will automatically have a metric with the
same signature.

The Newton law is valid for small speeds compared to the speed of light, so when we want to extend the theory
for all speeds, we only have 4 options: O(3, 1) with either c → ∞ or c finite and O(4) with either c → ∞ or c
finite. If c is finite, it has to be large enough, so that we still recover the Newton law for small speeds with the given
experimental precision. All 4 cases give the correct Newton law, but give different predictions for large speeds. All
we need to do to decide which one is correct is to perform such large speeds (relativistic) experiments. It turns out
that all such relativistic experiments are in agreement with the O(3, 1) case where c is the (finite) speed of light and
with disagreement with the 3 other cases. For small speeds however (i.e. Newtonean physics), all 4 cases will work,
as long as c is chosen large enough.

Given a tensor equation, we can easily determine, if it transforms correctly under the Galilean (c → ∞) or Lorentz
transformations (c is finite). All we have to do is to perform the limit c→∞. For example the Newton second law is
recovered if we do the c→∞ limit, but Maxwell equations are only recovered if we choose c to be exactly the speed
of light in the Maxwell equations.

The reason why we write equations as tensor equations in 4D is that we can then use any coordinates (including any
time dependence), i.e. any observer, and the equations still have the exact same form. So specifying the metrics is
enough to define the coordinates (observer) and since the equations has only one form, that is all we need. If we write
equations only as tensors in 3D, we not only need to specify the (3D) metrics, but also how the observer accelerates
with respect to some (usually inertial) frame where the equations (let’s say Newton law) is defined and we then need
to transform all the time derivatives correctly. By using tensors in 4D, all those transformations are taken care of by
the standard tensor machinery and all we need to care about is exactly one observer, defined by its metric tensor.

By choosing the correct metrics and c (i.e. diag(−1, 1, 1, 1) and c the speed of light), all equations are then automati-
cally Lorentz invariant. If we choose c→∞ (and any metric), we automatically get all equations Galilean invariant.

3.1.2 High School Formulation

The usual (high school) formulation is the second Newton’s law:

m
d2x

dt2
= F

for some particle of the mass m and position x. To determine the force F, we have at hand the Newton’s law of
gravitation:

|F| = G
m1m2

r2

that expresses the magnitude |F| of the force between two particles with masses m1 and m2 and we also know that
the direction of the force is directly towards the other particle. We need to take into account all particles in the system,
determine the direction and magnitude of the force due to each of them and sum it up.

3.1.3 College Formulation

Unfortunately, it is quite messy to keep track of the direction of the forces and all the masses involved, it quickly
becomes cumbersome for more than 2 particles. For this reason, the better approach is to calculate the force (field)
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from the mass density function ρ:

∇ · F = −4πGmρ(t, x, y, z)

To see that both formulations are equivalent, integrate both sides inside some sphere:∫
∇ · F dxdydz = −4πGm2

∫
ρdxdydz

apply the Gauss theorem to the left hand side:∫
∇ · F dxdydz =

∫
F · n dS = 4πr2 F · n

where n = r
|r| and the right hand side is equal to −4πGm1m2 and we get:

F · n = −Gm1m2

r2

now we multiply both sides with n, use the fact that (F · n)n = F (because F is spherically symmetric), and we get
the traditional Newton’s law of gravitation:

F = −Gm1m2

r2
n

It is useful to deal with a scalar field instead of a vector field (and also not to have the mass m of the test particle in
our equations explicitly), so we define a gravitational potential by:

F = −m∇φ(t, x, y, z)

then the law of gravitation is

∇2φ = 4πGρ (3.1)

and the second law is:

m
d2x

dt2
= −m∇φ(t, x, y, z)

Note about units:

[r] = [x] = m

[m] = kg

[ρ] = kg m−3

[F ] = kg m s−2

[G] = kg−1 m3 s−2

[φ] = m2 s−2
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3.1.4 Differential Geometry Formulation

There are still problems with this formulation, because it is not immediatelly clear how to write those laws in other
frames, for example rotating, or accelerating – one needs to employ nontrivial assumptions about the systems, space,
relativity principle and it is often a source confusion. Fortunately there is a way out — differential geometry. By
reformulating the above laws in the language of the differential geometry, everything will suddenly be very explicit
and clear. As an added bonus, because the special and general relativity uses the same language, the real differences
between all these three theories will become clear.

We write x, y, z and t as components of one 4-vector

xµ =


t
x
y
z


Now we need to connect the Newtonian equations to geometry. To do that, we reformulate the Newton’s second law:

d2xi

dt2
+ δij∂jφ = 0

by choosing a parameter λ such, that d2λ
dt2 = 0, so in general

λ = at+ b

and

d2

dt2
= a2 d2

dλ2

so

d2xi

dλ2
+

1

a2
δij∂jφ = 0

and using the relation dλ
da = a we get

d2xi

dλ2
+ δij∂jφ

(
dt

dλ

)2

= 0

So using x0 instead of t, we endup with the following equations:

d2x0

dλ2
= 0

d2xi

dλ2
+ δij∂jφ

(
dx0

dλ

)2

= 0

But this is exactly the geodesic equation for the following Christoffel symbols:

Γi00 = δij∂jφ (3.2)

and all other components are zero.

In order to formulate the gravitation law, we now need to express ∇2φ in terms of geometric quantities like Γαβγ or
Rαβγδ . We get the only nonzero components of the Riemann tensor:

Rj0k0 = −Rj00k = δji∂i∂kφ
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we calculate the Rαβ by contracting:

R00 = Rµ0µ0 = Ri0i0 = δij∂i∂jφ

Rij = 0

and we see that the Newton gravitation law is

R00 = 4πGρ

Rij = 0

Thus we have reformulated the Newton’s laws in a frame invariant way — the matter curves the geometry using the
equations:

R00 = 4πGρ

Rij = 0

from which one can (for example) calculate the Christoffel symbols and other things. The particles then move on the
geodesics:

d2xα

dλ2
+ Γαβγ

dxβ

dλ

dxγ

dλ
= 0

Both equations now have the same form in all coordinate systems (inertial or not) and it is clear how to transform them
— only the Christoffel symbols (and Ricci tensor) change and we have a formula for their transformation.

3.1.5 Metrics

There is a slight problem with the metrics — it can be proven that there is no metrics, that generates the Christoffel
symbols above. However, it turns out that if we introduce an invariant speed c in the metrics, then calculate the
Christoffel symbols (thus they depend on c) and then do the limit c→∞, we can get the Christoffel symbols above.

In fact, it turns out that there are many such metrics that generate the right Christoffel symbols. Below we list several
similar metrics and the corresponding Christoffel symbols (in the limit c → ∞), so that we can get a better feeling
what metrics work and what don’t and why:

gµν =


−c2 − 2φ 0 0 0

0 1 0 0
0 0 −1 0
0 0 0 1


Γ1

00 = ∂xφ

Γ2
00 = −∂yφ

Γ3
00 = ∂zφ

gµν =


−c2 − 2φ 0 0 0

0 1 0 0
0 0 −1 0
0 0 0 −1


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Γ1
00 = ∂xφ

Γ2
00 = −∂yφ

Γ3
00 = −∂zφ

gµν =


−c2 − 2φ 0 0 0

0 −1 0 0
0 0 −1 0
0 0 0 −1



Γ1
00 = −∂xφ

Γ2
00 = −∂yφ

Γ3
00 = −∂zφ

gµν =


−c2 + 45− 2φ 0 0 0

0 1 0 0
0 0 1 0
0 0 0 1



Γ1
00 = ∂xφ

Γ2
00 = ∂yφ

Γ3
00 = ∂zφ

gµν =


−c2 − 2φ 0 0 0

0 1− 2φ
c2 0 0

0 0 1− 2φ
c2 0

0 0 0 1− 2φ
c2



Γ1
00 = ∂xφ

Γ2
00 = ∂yφ

Γ3
00 = ∂zφ

gµν =


−c2 − 2φ 0 0 0

0 1 0 0
0 0 1 0
0 0 0 1


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Γ1
00 = ∂xφ

Γ2
00 = ∂yφ

Γ3
00 = ∂zφ

gµν =


c2 − 2φ 0 0 0

0 1 0 0
0 0 1 0
0 0 0 1



Γ1
00 = ∂xφ

Γ2
00 = ∂yφ

Γ3
00 = ∂zφ

gµν =


c2 − 2φ 0 0 0

0 c2 0 0
0 0 1 0
0 0 0 1



Γ2
00 = ∂yφ

Γ3
00 = ∂zφ

gµν =


c2 − 2φ 0 0 0

0 1 0 2φ
c2

0 0 1 0
0 0 0 1



Γ1
00 = ∂xφ

Γ2
00 = ∂yφ

Γ3
00 = ∂zφ

gµν =


c2 − 2φ 0 0 0

0 1 0 c2

0 0 1 0
0 0 0 1



Γ1
00 = −∞
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Γ2
00 = ∂yφ

Γ3
00 = ∂zφ

gµν =


c2 − 2φ 0 0 0

0 1 0 5
0 0 1 0
0 0 0 1



Γ1
00 = ∂xφ− 5∂zφ

Γ2
00 = ∂yφ

Γ3
00 = ∂zφ

gµν =


c2 − 2φ 0 5 0

0 1 0 0
0 0 1 0
0 0 0 1



Γ1
00 = ∂xφ

Γ2
00 = ∂yφ

Γ3
00 = ∂zφ

If we do the limit c→∞ in the metrics itself, all the working metrics degenerate to:

gµν =


±∞ 0 0 0

0 1 0 0
0 0 1 0
0 0 0 1


(possibly with nonzero but finite elements g0i = gi0 6= 0). So it seems like any metrics whose limit is
diag(±∞, 1, 1, 1), generates the correct Christoffel symbols:

Γ1
00 = ∂xφ

Γ2
00 = ∂yφ

Γ3
00 = ∂zφ

but this would have to be investigated further.
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Let’s take the metrics diag(−c2− 2φ, 1− 2φ
c2 , 1−

2φ
c2 , 1−

2φ
c2 ) and calculate the Christoffel symbols (without the limit

c→∞):

Γ0
µν =


−

∂
∂tφ(t,x,y,z)

−2φ(t,x,y,z)−c2 −
∂
∂xφ(t,x,y,z)

−2φ(t,x,y,z)−c2 −
∂
∂yφ(t,x,y,z)

−2φ(t,x,y,z)−c2 −
∂
∂zφ(t,x,y,z)

−2φ(t,x,y,z)−c2

−
∂
∂xφ(t,x,y,z)

−2φ(t,x,y,z)−c2
∂
∂tφ(t,x,y,z)

c2(−2φ(t,x,y,z)−c2) 0 0

−
∂
∂yφ(t,x,y,z)

−2φ(t,x,y,z)−c2 0
∂
∂tφ(t,x,y,z)

c2(−2φ(t,x,y,z)−c2) 0

−
∂
∂zφ(t,x,y,z)

−2φ(t,x,y,z)−c2 0 0
∂
∂tφ(t,x,y,z)

c2(−2φ(t,x,y,z)−c2)



Γ1
µν =



∂
∂xφ(t,x,y,z)

1−2
φ(t,x,y,z)

c2

−
∂
∂tφ(t,x,y,z)

c2(1−2
φ(t,x,y,z)

c2
)

0 0

−
∂
∂tφ(t,x,y,z)

c2(1−2
φ(t,x,y,z)

c2
)
−

∂
∂xφ(t,x,y,z)

c2(1−2
φ(t,x,y,z)

c2
)
−

∂
∂yφ(t,x,y,z)

c2(1−2
φ(t,x,y,z)

c2
)
−

∂
∂zφ(t,x,y,z)

c2(1−2
φ(t,x,y,z)

c2
)

0 −
∂
∂yφ(t,x,y,z)

c2(1−2
φ(t,x,y,z)

c2
)

∂
∂xφ(t,x,y,z)

c2(1−2
φ(t,x,y,z)

c2
)

0

0 −
∂
∂zφ(t,x,y,z)

c2(1−2
φ(t,x,y,z)

c2
)

0
∂
∂xφ(t,x,y,z)

c2(1−2
φ(t,x,y,z)

c2
)



Γ2
µν =



∂
∂yφ(t,x,y,z)

1−2
φ(t,x,y,z)

c2

0 −
∂
∂tφ(t,x,y,z)

c2(1−2
φ(t,x,y,z)

c2
)

0

0
∂
∂yφ(t,x,y,z)

c2(1−2
φ(t,x,y,z)

c2
)
−

∂
∂xφ(t,x,y,z)

c2(1−2
φ(t,x,y,z)

c2
)

0

−
∂
∂tφ(t,x,y,z)

c2(1−2
φ(t,x,y,z)

c2
)
−

∂
∂xφ(t,x,y,z)

c2(1−2
φ(t,x,y,z)

c2
)
−

∂
∂yφ(t,x,y,z)

c2(1−2
φ(t,x,y,z)

c2
)
−

∂
∂zφ(t,x,y,z)

c2(1−2
φ(t,x,y,z)

c2
)

0 0 −
∂
∂zφ(t,x,y,z)

c2(1−2
φ(t,x,y,z)

c2
)

∂
∂yφ(t,x,y,z)

c2(1−2
φ(t,x,y,z)

c2
)



Γ3
µν =



∂
∂zφ(t,x,y,z)

1−2
φ(t,x,y,z)

c2

0 0 −
∂
∂tφ(t,x,y,z)

c2(1−2
φ(t,x,y,z)

c2
)

0
∂
∂zφ(t,x,y,z)

c2(1−2
φ(t,x,y,z)

c2
)

0 −
∂
∂xφ(t,x,y,z)

c2(1−2
φ(t,x,y,z)

c2
)

0 0
∂
∂zφ(t,x,y,z)

c2(1−2
φ(t,x,y,z)

c2
)
−

∂
∂yφ(t,x,y,z)

c2(1−2
φ(t,x,y,z)

c2
)

−
∂
∂tφ(t,x,y,z)

c2(1−2
φ(t,x,y,z)

c2
)
−

∂
∂xφ(t,x,y,z)

c2(1−2
φ(t,x,y,z)

c2
)
−

∂
∂yφ(t,x,y,z)

c2(1−2
φ(t,x,y,z)

c2
)
−

∂
∂zφ(t,x,y,z)

c2(1−2
φ(t,x,y,z)

c2
)


By taking the limit c→∞, the only nonzero Christoffel symbols are:

Γ1
00 = ∂xφ

Γ2
00 = ∂yφ

Γ3
00 = ∂zφ

or written compactly:

Γi00 = δij∂jφ

So the geodesics equation

d2xα

dλ2
+ Γαβγ

dxβ

dλ

dxγ

dλ
= 0

becomes

d2x0

dλ2
= 0

d2xi

dλ2
+ δij∂jφ

(
dx0

dλ

)2

= 0
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From the first equation we get x0 = aλ+ b, we substitute to the second equation:

1

a2

d2xi

dλ2
+ δij∂jφ = 0

or

d2xi

d(x0)2
+ δij∂jφ = 0

d2xi

dt2
= −δij∂jφ

So the Newton’s second law is the equation of geodesics.

3.1.6 Obsolete section

This section is obsolete, ideas from it should be polished (sometimes corrected) and put to other sections.

The problem is, that in general, Christoffel symbols have 40 components and metrics only 10 and in our case, we cannot
find such a metrics, that generates the Christoffel symbols above. In other words, the spacetime that describes the
Newtonian theory is affine, but not a metric space. The metrics is singular, and we have one metrics diag(−1, 0, 0, 0)
that describes the time coordinate and another metrics diag(0, 1, 1, 1) that describes the spatial coordinates. We know
the affine connection coefficients Γαβγ , so that is enough to calculate geodesics and to differentiate vectors and do
everything we need.

However, for me it is still not satisfactory, because I really want to have a metrics tensor, so that I can easily derive
things in exactly the same way as in general relativity. To do that, we will have to work in the regime c is finite and
only at the end do the limit c→∞.

We start with Einstein equations:

Rαβ − 1
2Rgαβ =

8πG

c4
Tαβ

or

Rαβ =
8πG

c4
(Tαβ − 1

2Tgαβ)

Rαβ =
8πG

c4
(Tαβ − 1

2T )

The energy-momentum tensor is

Tαβ = ρUαUβ

in our approximation U i ∼ 0 and U0 ∼ c, so the only nonzero component is:

T 00 = ρc2

T = ρc2

and

Rij =
8πG

c4
(− 1

2ρc
2) = −4πG

c2
ρ
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R0
0 =

8πG

c4
( 1

2ρc
2) =

4πG

c2
ρ

We need to find such a metric tensor, that

R0
0 =

1

c2
∇2φ

then we get (3.1).

There are several ways to choose the metrics tensor. We start We can always find a coordinate transformation, that
converts the metrics to a diagonal form with only 1, 0 and −1 on the diagonal. If we want nondegenerate metrics, we
do not accept 0 (but as it turns out, the metrics for the Newtonian mechanics is degenerated). Also, it is equivalent if
we add a minus to all diagonal elements, e.g. diag(1, 1, 1, 1) and diag(−1,−1,−1,−1) are equivalent, so we are left
with these options only: signature 4:

gµν = diag(1, 1, 1, 1)

signature 2:

gµν = diag(−1, 1, 1, 1)

gµν = diag(1,−1, 1, 1)

gµν = diag(1, 1,−1, 1)

gµν = diag(1, 1, 1,−1)

signature 0:

gµν = diag(−1,−1, 1, 1)

gµν = diag(−1, 1,−1, 1)

gµν = diag(−1, 1, 1,−1)

No other possibility exists (up to adding a minus to all elements). We can also quite easily find coordinate transforma-
tions that swap coordinates, i.e. we can always find a transformation so that we first have only −1 and then only 1 on
the diagonal, so we are left with: signature 4:

gµν = diag(1, 1, 1, 1)

signature 2:

gµν = diag(−1, 1, 1, 1)

signature 0:

gµν = diag(−1,−1, 1, 1)

One possible physical interpretation of the signature 0 metrics is that we have 2 time coordinates and 2 spatial coor-
dinates. In any case, this metrics doesn’t describe our space (neither Newtonian nor general relativity), because we
really need the spatial coordinates to have the metrics either diag(1, 1, 1) or diag(−1,−1,−1).
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So we are left with either (this case will probably not work, but I want to have an explicit reason why it doesn’t work):

gµν =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


or (this is the usual special relativity)

gµν =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


It turns out, that one option to turn on gravitation is to add the term − 2φ

c2 1 to the metric tensor, in the first case:

gµν =


1− 2φ

c2 0 0 0

0 1− 2φ
c2 0 0

0 0 1− 2φ
c2 0

0 0 0 1− 2φ
c2


and second case:

gµν =


−1− 2φ

c2 0 0 0

0 1− 2φ
c2 0 0

0 0 1− 2φ
c2 0

0 0 0 1− 2φ
c2


The second law is derived from the equation of geodesic:

d2xα

dλ2
+ Γαβγ

dxβ

dλ

dxγ

dλ
= 0

in an equivalent form

dUα

dτ
+ ΓαβγU

βUγ = 0

The only nonzero Christoffel symbols in the first case are (in the expressions for the Christoffel symbols below, we set

56 Chapter 3. Classical Mechanics, Special and General Relativity



Theoretical Physics Reference, Release 0.1

c = 1):

Γ0
µν =


−

∂
∂tφ(t,x,y,z)

1−2φ(t,x,y,z) −
∂
∂xφ(t,x,y,z)

1−2φ(t,x,y,z) −
∂
∂yφ(t,x,y,z)

1−2φ(t,x,y,z) −
∂
∂zφ(t,x,y,z)

1−2φ(t,x,y,z)

−
∂
∂xφ(t,x,y,z)

1−2φ(t,x,y,z)

∂
∂tφ(t,x,y,z)

1−2φ(t,x,y,z) 0 0

−
∂
∂yφ(t,x,y,z)

1−2φ(t,x,y,z) 0
∂
∂tφ(t,x,y,z)

1−2φ(t,x,y,z) 0

−
∂
∂zφ(t,x,y,z)

1−2φ(t,x,y,z) 0 0
∂
∂tφ(t,x,y,z)

1−2φ(t,x,y,z)



Γ1
µν =


∂
∂xφ(t,x,y,z)

1−2φ(t,x,y,z) −
∂
∂tφ(t,x,y,z)

1−2φ(t,x,y,z) 0 0

−
∂
∂tφ(t,x,y,z)

1−2φ(t,x,y,z) −
∂
∂xφ(t,x,y,z)

1−2φ(t,x,y,z) −
∂
∂yφ(t,x,y,z)

1−2φ(t,x,y,z) −
∂
∂zφ(t,x,y,z)

1−2φ(t,x,y,z)

0 −
∂
∂yφ(t,x,y,z)

1−2φ(t,x,y,z)

∂
∂xφ(t,x,y,z)

1−2φ(t,x,y,z) 0

0 −
∂
∂zφ(t,x,y,z)

1−2φ(t,x,y,z) 0
∂
∂xφ(t,x,y,z)

1−2φ(t,x,y,z)



Γ2
µν =



∂
∂yφ(t,x,y,z)

1−2φ(t,x,y,z) 0 −
∂
∂tφ(t,x,y,z)

1−2φ(t,x,y,z) 0

0
∂
∂yφ(t,x,y,z)

1−2φ(t,x,y,z) −
∂
∂xφ(t,x,y,z)

1−2φ(t,x,y,z) 0

−
∂
∂tφ(t,x,y,z)

1−2φ(t,x,y,z) −
∂
∂xφ(t,x,y,z)

1−2φ(t,x,y,z) −
∂
∂yφ(t,x,y,z)

1−2φ(t,x,y,z) −
∂
∂zφ(t,x,y,z)

1−2φ(t,x,y,z)

0 0 −
∂
∂zφ(t,x,y,z)

1−2φ(t,x,y,z)

∂
∂yφ(t,x,y,z)

1−2φ(t,x,y,z)



Γ3
µν =


∂
∂zφ(t,x,y,z)

1−2φ(t,x,y,z) 0 0 −
∂
∂tφ(t,x,y,z)

1−2φ(t,x,y,z)

0
∂
∂zφ(t,x,y,z)

1−2φ(t,x,y,z) 0 −
∂
∂xφ(t,x,y,z)

1−2φ(t,x,y,z)

0 0
∂
∂zφ(t,x,y,z)

1−2φ(t,x,y,z) −
∂
∂yφ(t,x,y,z)

1−2φ(t,x,y,z)

−
∂
∂tφ(t,x,y,z)

1−2φ(t,x,y,z) −
∂
∂xφ(t,x,y,z)

1−2φ(t,x,y,z) −
∂
∂yφ(t,x,y,z)

1−2φ(t,x,y,z) −
∂
∂zφ(t,x,y,z)

1−2φ(t,x,y,z)


and in the second case, only Γ0

µν is different:

Γ0
µν =


∂
∂tφ(t,x,y,z)

1+2φ(t,x,y,z)

∂
∂xφ(t,x,y,z)

1+2φ(t,x,y,z)

∂
∂yφ(t,x,y,z)

1+2φ(t,x,y,z)

∂
∂zφ(t,x,y,z)

1+2φ(t,x,y,z)
∂
∂xφ(t,x,y,z)

1+2φ(t,x,y,z) −
∂
∂tφ(t,x,y,z)

1+2φ(t,x,y,z) 0 0
∂
∂yφ(t,x,y,z)

1+2φ(t,x,y,z) 0 −
∂
∂tφ(t,x,y,z)

1+2φ(t,x,y,z) 0
∂
∂zφ(t,x,y,z)

1+2φ(t,x,y,z) 0 0 −
∂
∂tφ(t,x,y,z)

1+2φ(t,x,y,z)


Now we assume that ∂µφ ∼ φ � c2, so all Γαβγ are of the same order. Also |U i| � |U0| and U0 = c, so the only
nonnegligible term is

dUα

dτ
+ Γα00(U0)2 = 0

Substituting for the Christoffel symbol we get

dU i

dτ
= −

δij∂j
φ
c2

1− 2φ
c2

c2 = −δij(∂jφ)

(
1 +O

(
φ

c2

))
= −δij∂jφ+O

((
φ

c2

)2
)

and multiplying both sides with m:

m
dU i

dτ
= −m∂jφ δij

which is the second Newton’s law. For the zeroth component we get (first case metric)

m
dU0

dτ
= m

dφ

dτ
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second case:

m
dU0

dτ
= −mdφ

dτ

Where mU0 = p0 is the energy of the particle (with respect to this frame only), this means the energy is conserved
unless the gravitational field depends on time.

To summarize: the Christoffel symbols (3.2) that we get from the Newtonian theory contain c, which up to this point
can be any speed, for example we can set c = 1 ms−1. However, in order to have some metrics tensor that generates
those Christoffel symbols, the only way to do that is by the metrics

diag(−1, 1, 1, 1)− 2φ

c2
1

then calculating the Christoffel symbols. If we neglect the terms of the order O
((

φ
c2

)2
)

and higher, we get the

Newtonian Christoffel symbols (3.2) that we want. It’s clear that in order to neglect the terms, we must have |φ| � c2,
so we must choose c large enough for this to work. To put it plainly, unless c is large, there is no metrics in our
Newtonian spacetime. However for c large, everything is fine.

3.1.7 Intertial frames

What is an inertial frame? Inertial frame is such a frame that doesn’t have any fictitious forces. What is a fictitious
force? If we take covariant time derivative of any vector, then fictitious forces are all the terms with nonzero Christoffel
symbols. In other words, nonzero Christoffel symbols mean that by (partially) differentiating with respect to time, we
need to add additional terms in order to get a proper vector again – and those terms are called fictitious forces if we
are differentiating the velocity vector.

Inertial frame is a frame without fictitious forces, i.e. with all Christoffel symbols zero in the whole frame. This is
equivalent to all components of the Riemann tensor being zero:

Rαβγδ = 0

In general, if Rαβγδ 6= 0 in the whole universe, then no such frame exists, but one can always achieve that locally,
because one can always find a coordinate transformation so that the Christoffel symbols are zero locally (e.g. at one
point), but unlessRαβγδ = 0, the Christoffel symbols will not be zero in the whole frame. So the (local) inertial frame
is such a frame that has zero Christoffel symbols (locally).

What is the metrics of the inertial frame? It is such a metrics, that Γαβγ = 0. The derivatives ∂µΓαβγ however doesn’t
have to be zero. We know that taking any of the metrics listed above with φ = const we get all the Christoffel symbols
zero. So for example these two metrics (one with a plus sign, the other with a minus sign) have all the Christoffel
symbols zero:

gµν =


±c2 0 0 0

0 1 0 0
0 0 1 0
0 0 0 1


Such a metrics corresponds to an inertial frame then.

What are the (coordinate) transformations, that transform from one intertial frame to another? Those are all transfor-
mations that start with an inertial frame metrics (an example of such a metrics is given above), transform it using the
transformation matrix and the resulting metrics is also inertial. In particular, let xµ be inertial, thus gµν is an inertial
metrics, then transform to x′µ and g′:

g′αβ =
∂xµ

∂x′α
∂xν

∂x′β
gµν =

(
∂x

∂x′

)T
g

(
∂x

∂x′

)
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if we denote the transformation matrix by Λ:

Λµα =
∂xµ

∂x′α

then the transformation law is:

g′ = ΛT gΛ

Now let’s assume that g′ = g, i.e. both inertial systems are given by the same matrix and let’s assume this particular
form:

g′µν = gµν =


±c2 0 0 0

0 1 0 0
0 0 1 0
0 0 0 1


(e.g. this covers almost all possible Newtonian metrics tensors).

3.1.8 Lorentz Group

The Lorentz group is O(3,1), e.g. all matrices satisfying:

g = ΛT gΛ (3.3)

with g = diag(−c2, 1, 1, 1). Taking the determinant of (3.3) we get (det Λ)2 = 1 or det Λ = ±1. Writing the 00
component of (3.3) we get

−c2 = −c2(A0
0)2 + (A0

1)2 + (A0
2)2 + (A0

3)2

or

(A0
0)2 = 1 +

1

c2
(
(A0

1)2 + (A0
2)2 + (A0

3)2
)

Thus we can see that either A0
0 ≥ 1 (the transformation preserves the direction of time, orthochronous) or A0

0 ≤ −1
(not orthochronous). Thus we can see that the O(3, 1) group consists of 4 continuous parts, that are not connected.

First case: elements with det Λ = 1 and A0
0 ≥ 1. Transformations with det Λ = 1 form a subgroup and are called

SO(3, 1), if they also have A0
0 ≥ 1 (orthochronous), then they also form a subgroup and are called the proper Lorentz

transformations and denoted by SO+(3, 1). They consists of Lorentz boosts, example in the x-direction:

Λµν =


1√

1− v2

c2

−
v
c2√

1− v2

c2

0 0

− v√
1− v2

c2

1√
1− v2

c2

0 0

0 0 1 0
0 0 0 1


which in the limit c→∞ gives

Λµν =


1 0 0 0
−v 1 0 0
0 0 1 0
0 0 0 1


and spatial rotations:

R1(φ) =


1 0 0 0
0 1 0 0
0 0 cosφ sinφ
0 0 − sinφ cosφ


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R2(φ) =


1 0 0 0
0 cosφ 0 sinφ
0 0 1 0
0 − sinφ 0 cosφ



R3(φ) =


1 0 0 0
0 cosφ sinφ 0
0 − sinφ cosφ 0
0 0 0 1


(More rigorous derivation will be given in a moment.) It can be shown (see below), that all other elements (improper
Lorentz transformations) of the O(3, 1) group can be written as products of an element from SO+(3, 1) and an element
of the discrete group:

{1, P, T, PT}

where P is space inversion (also called space reflection or parity transformation):

P =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


and T is time reversal (also called time inversion):

T =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


Second case: elements with det Λ = 1 and A0

0 ≤ −1. An example of such an element is PT . In general, any product
from SO+(3, 1) and PT belongs here.

Third case: elements with det Λ = −1 and A0
0 ≥ 1. An example of such an element is P . In general, any product

from SO+(3, 1) and P belongs here.

Fourth case: elements with det Λ = −1 and A0
0 ≤ −1. An example of such an element is T . In general, any product

from SO+(3, 1) and T belongs here.

Example: where does the reflection around a single spatial axis (t, x, y, z) → (t,−x, y, z) belong to? It is the third
case, because the determinant is det Λ = −1 and the 00 element is 1. Written in the matrix form:

Λ =


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1

 =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1




1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 =

=


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1




1 0 0 0
0 1 0 0
0 0 cosπ sinπ
0 0 − sinπ cosπ

 = PR1(π)

So it is constructed using the R1 element from SO+(3, 1) and P from the discrete group above.

We can now show why the decomposition O(3, 1) = SO+(3, 1)×{1, P, T, PT} works. Note that PT = −1. First
we show that SO(3, 1) = SO+(3, 1) × {1,−1}. This follows from the fact, that all matrices with Λ0

0 ≤ −1 can be
written using −1 and a matrix with Λ0

0 ≥ 1. All matrices with det Λ = −1 can be constructed from a matrix with
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det Λ = 1 (i.e. SO(3, 1)) and a diagonal matrix with odd number of -1, below we list all of them together with their
construction using time reversal, parity and spatial rotations:

diag(−1, 0, 0, 0) = T

diag(0,−1, 0, 0) = PR1(π)

diag(0, 0,−1, 0) = PR2(π)

diag(0, 0, 0,−1) = PR3(π)

diag(0,−1,−1,−1) = P

diag(−1, 0,−1,−1) = TR1(π)

diag(−1,−1, 0,−1) = TR2(π)

diag(−1,−1,−1, 0) = TR3(π)

But Ri(π) belongs to SO+(3, 1), so we just need two extra elements, T and P to construct all matrices with det Λ =
−1 using matrices from SO(3, 1). So to recapitulate, if we start with SO+(3, 1) we need to add the element PT = −1
to construct SO(3, 1) and then we need to add P and T to construct O(3, 1). Because all other combinations like
PPT = T reduce to just one of {1, P, T,−1}, we are done.

The elements from SO+(3, 1) are proper Lorentz transformations, all other elements are improper. Now we’d like to
construct the proper Lorentz transformation matrix A explicitly. As said above, all improper transformations are just
proper transformations multiplied by either P , T or PT , so it is sufficient to construct A.

We can always write A = eL, then:

detA = det eL = eTrL = 1

so TrL = 0 and L is a real, traceless matrix. Rewriting (3.3):

g = AT gA

A−1 = g−1AT g

e−L = g−1eL
T

g = eg
−1LT g

−L = g−1LT g

−gL = (gL)T

The matrix gL is thus antisymmetric and the general form of L is then:

L =


0 L01

c2
L02

c2
L03

c2

L01 0 L12 L13

L02 −L12 0 L23

L03 −L13 −L23 0


One can check, that gL is indeed antisymmetric. However, for a better parametrization, it’s better to work with a metric
diag(−1, 1, 1, 1), which can be achieved by putting c into (ct, x, y, z), or equivalently, to work with xµ = (t, x, y, z)
and multiply this by a matrix C = diag(c, 1, 1, 1) to get (ct, x, y, z). To get a symmetric L̃, we just have to do
Cx′ = L̃Cx, so to get an unsymmetric L from the symmetric one, we need to do C−1L̃C, so we get:

L = C−1


0 ζ1 ζ2 ζ3
ζ1 0 −ϕ3 ϕ2

ζ2 ϕ3 0 −ϕ1

ζ3 −ϕ2 ϕ1 0

C = −iϕ · L− iζ · C−1MC
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We have parametrized all the proper Lorentz transformations with just 6 parameters ζ1, ζ2, ζ3, ϕ1, ϕ2 and ϕ3. The
matrices L and M are defined as:

L1 = −i


0 0 0 0
0 0 0 0
0 0 0 1
0 0 −1 0



L2 = −i


0 0 0 0
0 0 0 −1
0 0 0 0
0 1 0 0



L3 = −i


0 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 0



M1 = i


0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0



M2 = i


0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0



M3 = i


0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0


Straightforward calculation shows:

[Li, Lj ] = iεijkLk

[Li,Mj ] = iεijkMk

[Mi,Mj ] = −iεijkLk

The first relation corresponds to the commutation relations for angular momentum, second relation shows that M
transforms as a vector under rotations and the final relation shows that boosts do not in general commute.

We get:

A = e−iϕ·L−iζ·C
−1MC = C−1 e−iϕ·L−iζ·M C

As a special case, the rotation around the z-axis is given by ϕ = (0, 0, ϕ) and ζ = 0:

A = e−iϕL3 = 1− L2
3 + iL3 sinϕ+ L2

3 cosϕ =


1 0 0 0
0 cosϕ sinϕ 0
0 − sinϕ cosϕ 0
0 0 0 1


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The boost in the x-direction is ϕ = 0 and ζ = (ζ, 0, 0), e.g.:

A = C−1e−iζM1C = C−1
(
1−M2

1 + iM1 sinh ζ +M2
1 cosh ζ

)
C =

= C−1


cosh ζ − sinh ζ 0 0
− sinh ζ cosh ζ 0 0

0 0 1 0
0 0 0 1

C =


cosh ζ − 1

c sinh ζ 0 0
−c sinh ζ cosh ζ 0 0

0 0 1 0
0 0 0 1


from the construction, −∞ < ζ < ∞, so we may do the substitution ζ = v

c atanh
(
v
c

)
, where −c < v < c. The

inverse transformation is:

cosh ζ =
1√

1− v2

c2

sinh ζ =
v
c√

1− v2

c2

and we get the boost given above:

A =


cosh ζ − 1

c sinh ζ 0 0
−c sinh ζ cosh ζ 0 0

0 0 1 0
0 0 0 1

 =


1√

1− v2

c2

−
v
c2√

1− v2

c2

0 0

− v√
1− v2

c2

1√
1− v2

c2

0 0

0 0 1 0
0 0 0 1


Adding two boosts together:

A(u)A(v) =


1√

1−u2

c2

−
u
c2√

1−u2

c2

0 0

− u√
1−u2

c2

1√
1−u2

c2

0 0

0 0 1 0
0 0 0 1




1√

1− v2

c2

−
v
c2√

1− v2

c2

0 0

− v√
1− v2

c2

1√
1− v2

c2

0 0

0 0 1 0
0 0 0 1

 =

=


1√

1−w2

c2

−
w
c2√

1−w2

c2

0 0

− w√
1−w2

c2

1√
1−w2

c2

0 0

0 0 1 0
0 0 0 1


with

w =
u+ v

1 + uv
c2

3.1.9 O(4) Group

The group of rotations in 4 dimensions is O(4), e.g. all matrices satisfying:

g = ΛT gΛ (3.4)
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with g = diag(c2, 1, 1, 1). Taking the determinant of (3.4) we get (det Λ)2 = 1 or det Λ = ±1. Writing the 00
component of (3.4) we get

c2 = c2(A0
0)2 + (A0

1)2 + (A0
2)2 + (A0

3)2

or

(A0
0)2 = 1− 1

c2
(
(A0

1)2 + (A0
2)2 + (A0

3)2
)

Thus we always have −1 ≤ A0
0 ≤ 1. That is different to the O(3, 1) group: the O(4) group consists of only 2

continuous parts, that are not connected. (The SO(4) part contains the element −1 though, but one can get to it
continuously, so the group is doubly connected.)

Everything proceeds much like for the O(3, 1) group, so gL is antisymmetric, but this time g = diag(c2, 1, 1, 1), so
we get:

L =


0 −L01

c2 −L02

c2 −L03

c2

L01 0 L12 L13

L02 −L12 0 L23

L03 −L13 −L23 0


and so we also have 6 generators, but this time all of them are rotations:

A = C−1 e−iϕaLa C

with a = 1, 2, 3, 4, 5, 6. The spatial rotations are the same as for O(3, 1) and the remaining 3 rotations are (t, x), (t, y)
and (t, z) plane rotations. So for example the (t, x) rotation is:

A = C−1


cosϕ4 sinϕ4 0 0
− sinϕ4 cosϕ4 0 0

0 0 1 0
0 0 0 1

C =


cosϕ4

1
c sinϕ4 0 0

−c sinϕ4 cosϕ4 0 0
0 0 1 0
0 0 0 1


Now we can do this identification:

sinφ4 =
v
c√

1 + ( vc )2

cosφ4 =
1√

1 + ( vc )2

so we get the Galilean transformation in the limit c→∞:

A =


1√

1+( vc )2

v
c2√

1+( vc )2
0 0

− v√
1+( vc )2

1√
1+( vc )2

0 0

0 0 1 0
0 0 0 1

→


1 0 0 0
−v 1 0 0
0 0 1 0
0 0 0 1


Adding two boosts together:

A(u)A(v) =


1√

1+u2

c2

u
c2√

1+u2

c2

0 0

− u√
1+u2

c2

1√
1+u2

c2

0 0

0 0 1 0
0 0 0 1




1√

1+ v2

c2

v
c2√

1+ v2

c2

0 0

− v√
1+ v2

c2

1√
1+ v2

c2

0 0

0 0 1 0
0 0 0 1

 =
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=


1√

1+w2

c2

w
c2√

1+w2

c2

0 0

− w√
1+w2

c2

1√
1+w2

c2

0 0

0 0 1 0
0 0 0 1


with

w =
u+ v

1− uv
c2

However, there is one peculiar thing here that didn’t exist in the O(3, 1) case: by adding two velocities less than c, for
example u = v = c/2, we get:

w =
c

1− 1
4

=
4c

3
> c

(as opposed to w = c
1+ 1

4

= 4c
5 < c in the O(3, 1) case). So one can get over c easily. By adding u = v = 4c

3 together:

w =
8c
3

1− 16
9

= −24c

7
< 0

(as opposed to w =
8c
3

1+ 16
9

= 24c
25 > 0 in the O(3, 1) case). So we can also get to negative speeds easily. One also needs

to be careful with identifying cosφ4 = 1√
1+( vc )2

, because for ϕ4 > π/2 we should probably set cosϕ4 = − 1√
1+( vc )2

.

All of this follows directly from the structure of SO(4), because one can get from Λ0
0 > 0 to Λ0

0 < 0 continuously
(this corresponds to increasing ϕ4 over π/2). In fact, by adding two speeds u = v > c(

√
2 − 1), one always gets

w > c. But if c(
√

2− 1)
.
= 0.414c is larger than any speed that we are concerned about, we are fine.

3.1.10 Proper Time

Proper time τ is a time elapsed by (physical) clocks along some (4D) trajectory. Coordinate time t is just some time
coordinate assigned to each point in the space and usually one can find some real clocks, that would measure such a
time (many times they are in the infinity). To find a formula for a proper time (in terms of the coordinate time), we
introduce a local inertial frame at each point of the trajectory – in this frame, the clocks do not move, e.g. x, y, z is
constant (zero) and there is no gravity (this follows from the definition of the local inertial frame), so the metric is just
a Minkowski metric.

For any metrics, ds2 is invariant:

ds2 = gµνdxµdxν

so coming to the local inertial frame, we have x, y, z constant and we get:

ds2 = g00dτ2

so:

dτ =

√
ds2

g00

since we are still in the local inertial frame (e.g. no gravity), we have g00 = −c2 (depending on which metrics we take
it could also be +c2), so:

dτ =

√
−ds2

c2
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This formula was derived in the local inertial frame, but the right hand side is the same in any inertial frame, because
ds2 is invariant and c too. So in any frame we have:

dτ =

√
−ds2

c2
=

√
−gµνdxµdxν

c2

We’ll explain how to calculate the proper time on the 1971 Hafele and Keating experiment. They transported cesium-
beam atomic clocks around the Earth on scheduled commercial flights (once flying eastward, once westward) and
compared their reading on return to that of a standard clock at rest on the Earth’s surface.

We’ll calculate it with all the metrics discussed above, to see the difference.

Weak Field Metric

Let’s start with the metrics:

ds2 = −
(

1 +
2φ

c2

)
c2dt2 +

(
1− 2φ

c2

)
(dx2 + dy2 + dz2)

Then:

τAB =

∫ B

A

dτ =

∫ B

A

√
−ds2

c2
=

∫ B

A

√(
1 +

2φ

c2

)
dt2 − 1

c2

(
1− 2φ

c2

)
(dx2 + dy2 + dz2) =

=

∫ B

A

dt

√√√√(1 +
2φ

c2

)
− 1

c2

(
1− 2φ

c2

)((
dx

dt

)2

+

(
dy

dt

)2

+

(
dz

dt

)2
)

=

=

∫ B

A

dt

√(
1 +

2φ

c2

)
− 1

c2

(
1− 2φ

c2

)
|V|2

where

|V|2 =

(
dx

dt

)2

+

(
dy

dt

)2

+

(
dz

dt

)2

is the nonrelativistic velocity. Then we expand the square root into power series and only keep terms with low powers
of c:

τAB =

∫ B

A

dt

√(
1 +

2φ

c2

)
− 1

c2

(
1− 2φ

c2

)
|V|2 =

∫ B

A

dt

(
1 +

φ

c2
− 1

2c2
|V|2

)
so

τAB =

∫ B

A

dt

(
1− 1

c2

(
1

2
|V|2 − φ

))
Now let Vg = Vg(t) be the speed of the plane relative to the (rotating) Earth (positive for the eastbound flights,
negative for the westbound ones), V⊕ = 2πR⊕

24
1
h the surface speed of the Earth, then the proper time for the clocks on

the surface is:

τ⊕ =

∫ B

A

dt

(
1− 1

c2

(
1

2
V 2
⊕ − φ⊕

))
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and for the clocks in the plane

τ =

∫ B

A

dt

(
1− 1

c2

(
1

2
(Vg + V⊕)2 − φ

))
then the difference between the proper times is:

τ − τ⊕ = ∆τ =
1

c2

∫ B

A

dt

(
−1

2
(Vg + V⊕)2 + φ+

1

2
V 2
⊕ − φ⊕

)
=

1

c2

∫ B

A

dt

(
φ− φ⊕ −

1

2
Vg(Vg + 2V⊕)

)
but φ− φ⊕ = gh, where h = h(t) is the altitude of the plane, so the final formula is:

∆τ =
1

c2

∫ B

A

dt

(
gh− 1

2
Vg(Vg + 2V⊕)

)
Let’s evaluate it for typical altitudes and speeds of commercial aircrafts:

R⊕ = 6378.1 km = 6.3781 · 106 m

V⊕ =
2πR⊕

24

1

h
=

2πR⊕
24 · 3600

1

s
=

2π 6.3781 · 106

24 · 3600

m

s
= 463.83

m

s

Vg = 870
km

h
= 241.67

m

s

h = 12 km = 12000 m

t =
2πR⊕
Vg

=
2π 6.3781 · 106

241.67
s = 165824.41 s ≈ 46 h

c = 3 · 108 m

s

For eastbound flights we get:

∆τ =
t

c2

(
gh− 1

2
Vg(Vg + 2V⊕)

)
= −4.344 · 10−8 s = −43.44 ns

and for westbound flights we get:

∆τ =
t

c2

(
gh− 1

2
Vg(Vg − 2V⊕)

)
= 3.6964 · 10−7 s = 369.63 ns

By neglecting gravity, one would get: eastbound flights:

∆τ =
t

c2

(
−1

2
Vg(Vg + 2V⊕)

)
= −260.34 ns

and for westbound flights:

∆τ =
t

c2

(
−1

2
Vg(Vg − 2V⊕)

)
= 152.73 ns

By just taking the clocks to the altitude 12 km and staying there for 46 hours (without moving with respect to the
inertial frame, e.g. far galaxies), one gets:

∆τ =
ght

c2
= 216.90 ns
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Rotating Disk Metric

The rotating disk metrics is (taking weak field gravitation into account):

ds2 = −
(

1 +
2φ

c2
− ω2

c2
(x2 + y2)

)
c2dt2 + (dx2 + dy2 + dz2)− 2ωy dxdt+ 2ωxdydt

Then:

τAB =

∫ B

A

dτ =

∫ B

A

√
−ds2

c2
=

=

∫ B

A

√(
1 +

2φ

c2
− ω2

c2
(x2 + y2)

)
dt2 − 1

c2
(dx2 + dy2 + dz2) +

2ωy

c2
dxdt− 2ωx

c2
dydt =

=

∫ B

A

dt

√(
1 +

2φ

c2
− ω2

c2
(x2 + y2)

)
− 1

c2
|V|2 +

2ωy

c2
dx

dt
− 2ωx

c2
dy

dt

where

|V|2 =

(
dx

dt

)2

+

(
dy

dt

)2

+

(
dz

dt

)2

is the nonrelativistic velocity. Then we expand the square root into power series and only keep terms with low powers
of c:

τAB =

∫ B

A

dt

(
1 +

φ

c2
− 1

2c2
|V|2 +

ωy

c2
dx

dt
− ωx

c2
dy

dt

)
so

τAB =

∫ B

A

dt

(
1− 1

c2

(
1

2
|V|2 − φ− ωy dx

dt
+ ωx

dy

dt

))
Now as before let Vg = Vg(t) be the speed of the plane (relative to the rotating Earth, e.g. relative to our frame),
V⊕ = 2πR⊕

24
1
h the surface speed of the Earth, so ωR⊕ = V⊕. For the clocks on the surface, we have:

x = R⊕

y = 0

z = 0

so

dx

dt
=

dy

dt
=

dz

dt
= 0

|V|2 = 0

then the proper time for the clocks on the surface is:

τ⊕ =

∫ B

A

dt

(
1− 1

c2
(−φ⊕)

)
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and for the clocks in the plane we have:

x = (R⊕ + h) cos Ωt

y = (R⊕ + h) sin Ωt

z = 0

where Ω is defined by Ω(R⊕ + h) = Vg , so

dx

dt
= −(R⊕ + h)Ω sin Ωt

dy

dt
= (R⊕ + h)Ω cos Ωt

dz

dt
= 0

|V|2 = Ω2(R⊕ + h)2

ωy
dx

dt
= −ωΩ(R⊕ + h)2 sin2 Ωt

ωx
dy

dt
= ωΩ(R⊕ + h)2 cos2 Ωt

and

τ =

∫ B

A

dt

(
1− 1

c2

(
1

2
Ω2(R⊕ + h)2 − φ+ ωΩ(R⊕ + h)2

))
then the difference between the proper times is:

τ − τ⊕ = ∆τ =
1

c2

∫ B

A

dt

(
−1

2
Ω2(R⊕ + h)2 − ωΩ(R⊕ + h)2 + φ− φ⊕

)
=

=
1

c2

∫ B

A

dt

(
−1

2
V 2
g − V⊕Vg

(
1 +

h

R⊕

)
+ φ− φ⊕

)
=

=
1

c2

∫ B

A

dt

(
φ− φ⊕ −

1

2
Vg

(
Vg + 2V⊕

(
1 +

h

R⊕

)))
but φ− φ⊕ = gh, where h = h(t) is the altitude of the plane and we approximate(

1 +
h

R⊕

)
≈ 1 ,

so the final formula is the same as before:

∆τ =
1

c2

∫ B

A

dt

(
gh− 1

2
Vg(Vg + 2V⊕)

)
Note: for the values above, the bracket

(
1 + h

R⊕

)2 .
= 1.00377, so it’s effect on the final difference of the proper times

is negligible (e.g. less than 1 ns). The difference is caused by a slightly vague definition of the speed of the plane, e.g.
the ground speed is a bit different to the speed relative to the rotating Earth (this depends on how much the atmosphere
rotates with the Earth).
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Concluding Remarks

The coordinate time t in both cases above is totally different. One can find some physical clocks in both cases that
measure (e.g. whose proper time is) the particular coordinate time, but the beauty of the differential geometry approach
is that we don’t have to care about this. t is just a coordinate, that we use to calculate something physical, like a proper
time along some trajectory, which is a frame invariant quantity. In both cases above, we got a different formulas for the
proper time of the surface clocks (and the clocks in the plane) in terms of the coordinate time (because the coordinate
time is different in both cases), however the difference of the proper times is the same in both cases:

∆τ =
1

c2

∫ B

A

dt

(
gh− 1

2
Vg(Vg + 2V⊕)

)
There is still a slight difference though – the t here used to evaluate the integral is different in both cases. To do it
correctly, one should take the total time as measured by any of the clocks and then use the right formula for the proper
time of the particular clock to convert to the particular coordinate time. However, the difference is small, of the order
of nanoseconds, so it’s negligible compared to the total flying time of 46 hours.

3.1.11 FAQ

How does one incorporate the fact, that there are only two possible transformations, into all of this? For more
info, see: http://arxiv.org/abs/0710.3398. Answer: in that article there are actually three possible transformations,
K < 0 corresponds to O(4), K > 0 to O(3, 1) and K = 0 to either of them in the limit c→∞.

What is the real difference between the Newtonian physics and special relativity? E.g. how do we derive the
Minkowski metrics, how do we know we need to set c = const and how do we incorporate gravity in it? Answer:
there are only three possible groups of transformations: O(4), O(3, 1) and a limit of either for c → ∞. All three
provide inequivalent predictions for high speeds, so we just choose the right one by experiment. It happens to be the
O(3, 1). As to gravity, that can be incorporated in either of them.

3.1.12 Questions Without Answers (Yet)

How can one reformulate the article http://arxiv.org/abs/0710.3398 into the language of the O(4) and O(3, 1) groups
above? Basically each assumption and equation must have some counterpart in what we have said above. I’d like to
identify those explicitely.

What are all the possible metrics, that generate the Newtonian Christoffel symbols? (Several such are given above, but
I want to know all of them) Probable answer: all metrics, whose inverse reduces to gµν = diag(0, 1, 1, 1) in the limit
c→∞. I would like to have an explicit proof of this though.

What is the role of the different metrics, that generate the same Christoffel symbols in the limit (c → ∞)? Can one
inertial frame be given with one and another frame with a different form of the metrics (e.g. one with g00 = c2 and
the other one with g00 = −c2?) Possible answer: there is no transformation to convert a metrics with signature +4 to
signature +2, so one has to choose one and then all other inertial frames have the same one.

What are all the allowed transformations between intertial frames? If we assume that the inertial frames are given with
one given metrics (see the previous question), then the answer is: representation of the O(3, 1) group if g00 = −c2 or
O(4) group if g00 = c2. But if one frame is g00 = −c2 and we transform to another frame with g00 = c2, then it is not
clear what happens. Possible answer: one has to choose some signature and stick to it, see also the previous question.

What is the real difference between Newtonian physics and general relativity? Given our formulation of Newtonian
physics using the differential geometry, I want to know what the physical differences are between all the three theories
are.
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CHAPTER

FOUR

CLASSICAL ELECTROMAGNETISM

4.1 Maxwell’s Equations

The Maxwell’s equations are:

∂αF
βα = µ0j

β

εαβγδ∂γFαβ = 0

and the Lorentz force is:
dpα
dτ

= qFαβu
β

where:

jα = (cρ, j)

Fαβ =


0 E1

c
E2

c
E3

c

−E1

c 0 −B3 B2

−E2

c B3 0 −B1

−E3

c −B2 B1 0


This corresponds to:

∇ ·E = c2µ0ρ

∇×B = µ0j +
1

c2
∂E

∂t
∇ ·B = 0

∇×E = −∂B

∂t

4.1.1 Four Potential

The four potential is defined by:

Aα =

(
φ

c
,A

)
Fαβ = ∂αAβ − ∂βAα

this corresponds to:

E = −∇φ− ∂A

∂t
B = ∇×A
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The Maxwell’s equations can then be written as (note that the two eq. without sources are automatically satisfied by
the four potential):

∂αF
βα = ∂α(∂βAα − ∂αAβ) = −∂α∂αAβ = µ0j

β

where we have employed the Lorentz gauge ∂αAα = 0.

4.2 Semiconductor Device Physics

In general, the task is to find the five quantities:

n(x, t), p(x, t),Jn(x, t),Jh(x, t),E(x, t)

where n (p) is the electron (hole) concentration, Jn (Jp) is the electron (hole) current density, E is the electric field.

And we have five equations that relate them. We start with the continuity equation:

∇ · J +
∂ρ

∂t
= 0

where the current density J is composed of electron and hole current densities:

J = Jn + Jp

and the charge density ρ is composed of mobile (electrons and holes) and fixed charges (ionized donors and acceptors):

ρ = q(p− n+ C)

where n and p is the electron and hole concetration, C is the net doping concetration (C = pD − nA where pD is the
concentration of ionized donors, charged positive, and nA is the concentration of ionized acceptors, charged negative)
and q is the electron charge (positive). We get:

∇ · Jn +∇ · Jp + q

(
∂p

∂t
− ∂n

∂t
+
∂C

∂t

)
= 0

Assuming the fixed charges C are time invariant, we get:

∇ · Jn − q
∂n

∂t
= −

(
∇ · Jp + q

∂p

∂t

)
≡ qR

where R is the net recombination rate for electrons and holes (a positive value means recombination, a negative value
generation of carriers). We get the carrier continuity equations:

∂n

∂t
= −R+

1

q
∇ · Jn (4.1)

∂p

∂t
= −R− 1

q
∇ · Jp

Then we need material relations that express how the current J is generated using E and n and p. A drift-diffusion
model is to assume a drift current (qµnnE) and a diffusion (qDn∇n), which gives:

Jn = qµnnE + qDn∇n (4.2)

Jp = qµppE− qDp∇p

where µn, µp, Dn, Dp are the carrier mobilities and diffusivities.

Final equation is the Gauss’s law:

∇ · (εE) = ρ

∇ · (εE) = q(p− n+ C) (4.3)
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4.2.1 Equations

Combining (4.2) and (4.1) we get the following three equations for three unknowns n, p and E:

∂n

∂t
= −R+∇ · (µnnE) +∇ · (Dn∇n)

∂p

∂t
= −R−∇ · (µppE) +∇ · (Dp∇p)

∇ · (εE) = q(p− n+ C)

And it is usually assumed that the magnetic field is time independent, so E = −∇φ and we get:

∂n

∂t
= −R−∇ · (µnn∇φ) +∇ · (Dn∇n) (4.4)

∂p

∂t
= −R+∇ · (µpp∇φ) +∇ · (Dp∇p)

∇ · (ε∇φ) = −q(p− n+ C)

These are three nonlinear (due to the terms µnn∇φ and µpp∇φ) equations for three unknown functions n, p and φ.

Example 1

We can substract the first two equations and we get:

∂q(p− n)

∂t
= −q∇ · ((µpp+ µnn)E) + q∇ · (Dp∇p−Dn∇n)

∇ · (εE) = q(p− n+ C)

and using ρ = q(p− n+ C) and σ = q(µpp+ µnn), we get:

∂ρ

∂t
− q ∂C

∂t
= −∇ · (σE) + q∇ · (Dp∇p−Dn∇n)

∇ · (εE) = ρ

So far we didn’t make any assumptions. Most of the times the net doping concetration C is time independent, which
gives:

∂ρ

∂t
= −∇ · (σE) + q∇ · (Dp∇p−Dn∇n)

∇ · (εE) = ρ

Assuming further Dp∇p−Dn∇n = 0, we just get the equation of continuity and the Gauss law:

∂ρ

∂t
+∇ · (σE) = 0

∇ · (εE) = ρ

Finally, assuming also that that ρ doesn’t depend on time, we get:

∇ · (σE) = 0

∇ · (εE) = ρ
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Example 2

As a simple model, assume Dn, Dp, µn, µp and ε are position independent and C = 0, R = 0:

∂n

∂t
= +µnn∇ ·E + µnE · ∇n+Dn∇2n

∂p

∂t
= −µpp∇ ·E− µpE · ∇p+Dp∇2p

ε∇ ·E = q(p− n)

Using E = −∇φ we get:

∂n

∂t
= −µnn∇2φ− µn∇φ · ∇n+Dn∇2n

∂p

∂t
= +µpp∇2φ+ µp∇φ · ∇p+Dp∇2p

ε∇2φ = −q(p− n)

4.2.2 Example 3

Let’s calculate the 1D pn-junction. We take the equations (4.4) and write them in 1D for the stationary state (∂n∂t =
∂p
∂t = 0):

0 = −R− (µnnφ
′)′ + (Dnn

′)′

0 = −R+ (µppφ
′)′ + (Dpp

′)′

(εφ′)′ = −q(p− n+ C)

We expand the derivatives and assume that µ and D is constant:

0 = −R− µnn′φ′ − µnnφ′′ +Dnn
′′

0 = −R+ µpp
′φ′ + µppφ

′′ +Dpp
′′

εφ′′ = −q(p− n+ C)

and we put the second derivatives on the left hand side:

n′′ =
1

Dn
(R+ µnn

′φ′ + µnnφ
′′) (4.5)

p′′ =
1

Dp
(R− µpp′φ′ − µppφ′′)

φ′′ = −q
ε

(p− n+ C)

now we introduce the variables yi:

y0 = n

y1 = y′0 = n′

y2 = p

y3 = y′2 = p′

y4 = φ

y5 = y′4 = φ′
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and rewrite (4.5):

y′1 =
1

Dn
(R+ µny1y5 + µny0y

′
5)

y′3 =
1

Dp
(R− µpy3y5 − µpy2y

′
5)

y′5 = −q
ε

(y2 − y0 + C)

So we are solving the following six nonlinear first order ODE:

y′5 = −q
ε

(y2 − y0 + C) (4.6)

y′0 = y1

y′1 =
1

Dn
(R+ µny1y5 + µny0y

′
5)

y′2 = y3

y′3 =
1

Dp
(R− µpy3y5 − µpy2y

′
5)

y′4 = y5
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CHAPTER

FIVE

FLUID DYNAMICS

5.1 Fluid Dynamics

5.1.1 Stress-Energy Tensor

In general, the stress energy tensor is the flux of momentum pµ over the surface xν . It is a machine that contains a
knowledge of the energy density, momentum density and stress as measured by any observer of the event.

Imagine a (small) box in the spacetime. Then the observer with a 4-velocity uµ measures the density of 4-momentum
dpα

dV in his frame as:

dpα

dV
= −Tαβuβ

and the energy density that he measures is:

ρ =
E

V
= −u

αpα
V

= −uα dpα
dV

= uαTαβu
β

One can also obtain the stress energy tensor from the Lagrangian L = L(ηρ, ∂νηρ, x
ν) by combining the Euler-

Lagrange equations

∂L
∂ηρ
− ∂ν

(
∂L

∂(∂νηρ)

)
= 0

with the total derivative dL
dxµ :

dL
dxµ

=
∂L
∂ηρ

∂µηρ +
∂L

∂(∂νηρ)
∂µ∂νηρ + ∂µL =

= ∂ν

(
∂L

∂(∂νηρ)

)
∂µηρ +

∂L
∂(∂νηρ)

∂ν∂µηρ + ∂µL =

= ∂ν

(
∂L

∂(∂νηρ)
∂µηρ

)
+ ∂µL

or

∂ν

(
∂L

∂(∂νηρ)
∂µηρ − Lδµν

)
+ ∂µL = 0

This can be written as:

∂νTµ
ν + fµ = 0
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where

Tµ
ν =

∂L
∂(∂νηρ)

∂µηρ − Lδµν

fµ = ∂µL

The Navier-Stokes equations can be derived from the conservation law:

∂νT
µν + fµ = 0

To obtain some Lagrangian (and action) for the perfect fluid, so that we can derive the stress energy tensor Tµν

from that, is not trivial, see for example arXiv:gr-qc/9304026. One has to take into account the equation of state and
incorporate the particle number conservation∇µ(nuµ) = 0 and no entropy exchange ∇µ(nsuµ) = 0 constraints.

The equation of continuity follows from the conservation of the baryon number — the volume V that contains certain
number of baryons can change, but the total number of baryons nV must remain constant:

d(nV )

dτ
= 0

dn

dτ
V + n

dV

dτ
= 0

uα(∂αn)V + n(∂αu
α)V = 0

∂α(nuα) = 0

Perfect Fluids

Perfect fluids have no heat conduction (T i0 = T 0i = 0) and no viscosity (T ij = p1), so in the comoving frame:

Tαβ = diag(ρc2, p, p, p) =
(
ρ+

p

c2

)
uαuβ + pgαβ

where in the comoving frame we have gµν = diag(−1, 1, 1, 1), u0 = c and ui = 0, but ∂αU i 6= 0. p is the pressure
with units [p] = N m−2 = kg m−1 s−2 (then [ pc2 ] = kg m−3), ρ is the rest mass density with units [ρ] = kg m−3, and
ρc2 is the energy density with units [ρc2] = kg m−1 s−2.

The last equation is a tensor equation so it holds in any frame. Let’s write the components explicitly:

T 00 =
(
ρ+

p

c2

)
u0u0 − p =

(
ρ+

p

c2

)
c2γ2 − p =

(
ρc2 + p

(
1− 1

γ2

))
γ2 =

(
ρc2 + p

v2

c2

)
γ2

T 0i = T i0 =
(
ρ+

p

c2

)
u0ui =

(
ρ+

p

c2

)
cviγ2 =

1

c

(
ρc2 + p

)
viγ2

T ij =
(
ρ+

p

c2

)
uiuj + pδij =

(
ρ+

p

c2

)
vivjγ2 + pδij

We now use the conservation of the stress energy tensor and the conservation of the number of particles:

∂νT
µν = 0 (5.1)

∂µ(nuµ) = 0 (5.2)

The equation (5.2) gives:

∂t(nγ) + ∂i(nv
iγ) = 0

∂t(nmγ) + ∂i(nmv
iγ) = 0 (5.3)
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∂t(nmc
2γ) + ∂i(nmc

2viγ) = 0 (5.4)

The equation (5.1) gives for µ = 0:

∂νT
0ν = 0

∂0T
00 + ∂iT

0i = 0

∂t

(
1

c

(
ρc2 + p

v2

c2

)
γ2

)
+ ∂i

(
1

c

(
ρc2 + p

)
viγ2

)
= 0

∂t

((
ρc2 + p

v2

c2

)
γ2

)
+ ∂i

((
ρc2 + p

)
viγ2

)
= 0 (5.5)

We now substract the equation (5.4) from (5.5):

∂t

((
ρc2γ − nmc2 + p

v2

c2
γ

)
γ

)
+ ∂i

((
ρc2γ − nmc2 + pγ

)
viγ
)

= 0

We define the nonrelativistic energy as:

E = ρc2γ − nmc2 = 1
2ρv

2 + (ρ− nm)c2 +O

(
v4

c2

)
so it contains the kinetic plus internal energies. We substitute back into (5.5):

∂t

((
E + p

v2

c2
γ

)
γ

)
+ ∂i

(
(E + pγ) viγ

)
= 0 (5.6)

This is the relativistic equation for the energy. Substituting nm = ργ − E
c2 into (5.3):

∂t

(
ργ2 − Eγ

c2

)
+ ∂i

((
ργ2 − Eγ

c2

)
vi
)

= 0 (5.7)

For µ = i we get:

∂νT
iν = 0

∂0T
i0 + ∂jT

ij = 0

∂t

(
1

c2
(
ρc2 + p

)
viγ2

)
+ ∂j

((
ρ+

p

c2

)
vivjγ2 + pδij

)
= 0

∂t

((
ρ+

p

c2

)
viγ2

)
+ ∂j

((
ρ+

p

c2

)
vivjγ2 + pδij

)
= 0 (5.8)

This is the momentum equation. The equations (5.7), (5.8) and (5.6) are the correct relativistic equations for the perfect
fluid (no approximations were done). We can take either (5.7) or (5.5) as the equation of continuity (both give the same
nonrelativistic equation of continuity). Their Newtonian limit is:

∂tρ+ ∂i(ρv
i) = 0

∂t
(
ρvi
)

+ ∂j
(
ρvivj + pδij

)
= 0

∂tE + ∂j
(
vj (E + p)

)
= 0

those are the Euler equations, also sometimes written as:

∂ρ

∂t
+∇ · (ρv) = 0

∂(ρv)

∂t
+∇ · (ρvvT ) +∇p = 0

∂E

∂t
+∇ · (v (E + p)) = 0
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Energy Equation

The energy equation can also be derived from thermodynamic and the other two Euler equations. We have the follow-
ing two Euler equations:

∂tρ+ ∂i(ρu
i) = 0

ρ∂tu
i + ρuj∂ju

i + δij∂jp = 0

We’ll need the following formulas:

∂t(uiu
i) = (∂tui)u

i + ui∂tu
i = (∂tui)δ

ijuj + ui∂tu
i =

= (∂tuiδ
ij)uj + ui∂tu

i = (∂tu
j)uj + ui∂tu

i = 2ui∂tu
i

∂j(uiu
i) = 2ui∂ju

i

∂tρ = −∂i(ρui)

∂tu
i = −uj∂jui −

δij

ρ
∂jp

−uj∂jp+ ∂t(ρU) =

= −dp

dt
+ ∂tp+ ∂t(ρU) =

= −dp

dt
+ ∂t(ρU + p) =

= −dp

dt
+

d

dt
(ρU + p)− uj∂j(ρU + p) =

= −dp

dt
+

dρ

dt

(
U +

p

ρ

)
+ ρ

d

dt

(
U +

p

ρ

)
− uj∂j(ρU + p) =

= −dp

dt
+

dρ

dt

(
U +

p

ρ

)
+ ρ

d

dt

(
U +

p

ρ

)
+ (ρU + p)∂ju

j − ∂j(ρUuj + puj) =

=

[
ρ

d

dt

(
U +

p

ρ

)
− dp

dt

]
+

(
U +

p

ρ

)[
dρ

dt
+ ρ∂ju

j

]
− ∂j(ρUuj + puj) =

= −∂j(ρUuj + puj)

0 = dQ = TdS = dU + pdV = d(U + pV )− V dp = d

(
U +

p

ρ

)
− 1

ρ
dp = dH − 1

ρ
dp

where V = 1
ρ is the specific volume and H = U + p

ρ is entalphy (heat content).

Then:

∂tE =

= ∂t(
1
2ρuiu

i + ρU) =

= 1
2uiu

i∂tρ+ 1
2ρ∂t(uiu

i) + ∂t(ρU) =

= − 1
2uiu

i∂j(ρu
j) + ρui∂tu

i + ∂t(ρU) =

= − 1
2uiu

i∂j(ρu
j)− ρuiuj∂jui − uiδij∂jp+ ∂t(ρU) =

= − 1
2uiu

i∂j(ρu
j)− 1

2ρu
j∂j(uiu

i)− uiδij∂jp+ ∂t(ρU) =

= − 1
2∂j(ρuiu

iuj)− uj∂jp+ ∂t(ρU) =

= − 1
2∂j(ρuiu

iuj)− ∂j(ρUuj + puj) =

= −∂j
(
uj
(

1
2ρuiu

i + ρU + p
))

=

= −∂j
(
uj (E + p)

)
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so:

∂tE + ∂j
(
uj (E + p)

)
= 0

∂E

∂t
+∇ · (u (E + p)) = 0

5.1.2 Navier-Stokes Equations

When we write the relativistic conservation law in a nonrelativistic limit (for a general fluid), we get the Cauchy
momentum equation:

ρ

(
∂v

∂t
+ v · ∇v

)
= ∇ · σ + f

where the stress tensor σ can be written as:

σ = −p1+T

and we get the Navier-Stokes equations:

ρ

(
∂v

∂t
+ v · ∇v

)
= −∇p+∇ ·T+ f

Those are the most general equations. If we assume some more things about the fluid, they can be further simplified.

For Newtonean fluids, we want T to be isotropic, linear in strain rates and it’s divergence zero for fluid at rest. It
follows that the only way to write the tensor under these conditions is:

Tij = 2µεij + δijλ∇ · v

where the strain rate is:

εij =
1

2
(∂jvi + ∂ivj)

The divergence of the tensor is:

∂jTij = 2µ∂jεij + ∂jδijλ∇ · v = µ∂j∂jvi + µ∂i∇ · v + λ∂i∇ · v = µ∂j∂jvi + (µ+ λ)∂i∇ · v

or in vector form (these are usually called the compressible Navier-Stokes equations):

∇ ·T = µ∇2v + (µ+ λ)∇∇ · v

For incompressible fluid we have∇ · v = 0, so we get the incompressible Navier-Stokes equations:

∇ ·T = µ∇2v

and for a perfect fluid we have no viscosity, e.g. µ = 0, then we get the Euler equations (for perfect fluid):

∇ ·T = 0

5.1.3 Bernoulli’s Principle

Bernoulli’s principle works for a perfect fluid, so we take the Euler equations:

ρ

(
∂v

∂t
+ v · ∇v

)
= −∇p+ f
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and put it into a vertical gravitational field f = (0, 0,−ρg) = −ρg∇z, so:

ρ

(
∂v

∂t
+ v · ∇v

)
= −∇p− ρg∇z

we divide by ρ:

∂v

∂t
+ v · ∇v = −∇

(
p

ρ
+ gz

)
and use the identity v · ∇v = 1

2∇v
2 + (∇× v)× v:

∂v

∂t
+

1

2
∇v2 + (∇× v)× v +∇

(
p

ρ
+ gz

)
= 0

so:
∂v

∂t
+ (∇× v)× v +∇

(
v2

2
+ gz +

p

ρ

)
= 0

If the fluid is moving, we integrate this along a streamline from the point A to B:∫
∂v

∂t
· dl +

[
v2

2
+ gz +

p

ρ

]B
A

= 0

So far we didn’t do any approximation (besides having a perfect fluid in a vertical gravitation field). Now we assume
a steady flow, so ∂v

∂t = 0 and since points A and B are arbitrary, we get:

v2

2
+ gz +

p

ρ
= const.

along the streamline. This is called the Bernoulli’s principle. If the fluid is not moving, we set v = 0 in the equations
above and immediately get:

v2

2
+ gz +

p

ρ
= const.

The last equation then holds everywhere in the (nonmoving) fluid (as opposed to the previous equation that only holds
along the streamline).

Hydrostatic Pressure

Let p1 be the pressure on the water surface and p2 the pressure h meters below the surface. From the Bernoulli’s
principle:

p1

ρ
= g · (−h) +

p2

ρ

so

p1 + hρg = p2

and we can see, that the pressure h meters below the surface is hρg plus the (atmospheric) pressure p1 on the surface.

Torricelli’s Law

We want to find the speed v of the water flowing out of the tank (of the height h) through a small hole at the bottom.
The (atmospheric) pressure at the water surface and also near the small hole is p1. From the Bernoulli’s principle:

p1

ρ
=
v2

2
+ g · (−h) +

p1

ρ

so:

v =
√

2gh

This is called the Torricelli’s law.
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Venturi Effect

A pipe with a cross section A1, pressure p1 and the speed of a perfect liquid v1 changes it’s cross section to A2, so the
pressure changes to p2 and the speed to v2. Given ∆p = p1 − p2, A1 and A2, calculate v1 and v2.

We use the continuity equation:

A1v1 = A2v2

and the Bernoulli’s principle:

v2
1

2
+
p1

ρ
=
v2

2

2
+
p2

ρ

so we have two equations for two unknowns v1 and v2, after solving it we get:

v1 = A2

√
2∆p

ρ(A2
1 −A2

2)

v2 = A1

√
2∆p

ρ(A2
1 −A2

2)

Hagen-Poiseuille Law

We assume incompressible (but viscuous) Newtonean fluid (in no external force field):

ρ

(
∂v

∂t
+ v · ∇v

)
= −∇p+ µ∇2v

flowing in the vertical pipe of radius R and we further assume steady flow ∂v
∂t = 0, axis symmetry vr = vθ =

∂θ(· · · ) = 0 and a fully developed flow ∂zvz = 0. We write the Navier-Stokes equations above in the cylindrical
coordinates and using the stated assumptions, the only nonzero equations are:

0 = −∂rp

0 = −∂zp+ µ
1

r
∂r(r∂rvz)

from the first one we can see the p = p(z) is a function of z only and we can solve the second one for vz = vz(r):

vz(r) =
1

4µ
(∂zp)r

2 + C1 log r + C2

We want vz(r = 0) to be finite, so C1 = 0, next we assume the no slip boundary conditions vz(r = R) = 0, so
C2 = − 1

4µ (∂zp)R
2 and we get the parabolic velocity profile:

vz(r) =
1

4µ
(−∂zp)(R2 − r2)

Assuming that the pressure decreases linearly across the length of the pipe, we have −∂zp = ∆P
L and we get:

vz(r) =
∆P

4µL
(R2 − r2)

We can now calculate the volumetric flow rate:

Q =
dV

dt
=

d

dt

∫
z dS =

∫
dz

dt
dS =

∫
vz dS =

∫ 2π

0

∫ R

0

vz r dr dφ =

=
∆Pπ

2µL

∫ R

0

(R2 − r2)r dr =
∆PπR4

8µL

so we can see that it depends on the 4th power of R. This is called the Hagen-Poiseuille law.
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5.2 MHD Equations

5.2.1 Introduction

The magnetohydrodynamics (MHD) equations are:

∂ρ

∂t
+∇ · (ρv) = 0 (5.9)

ρ

(
∂v

∂t
+ (v · ∇)v

)
= −∇p+

1

µ
(∇×B)×B + ρg (5.10)

∂B

∂t
= ∇× (v ×B) + η∇2B (5.11)

∇ ·B = 0 (5.12)

assuming η is constant. See the next section for a derivation. We can now apply the following identities (we use the
fact that∇ ·B = 0):

[(∇×B)×B]i = εijk(∇×B)jBk = εijkεjlm(∂lBm)Bk = (δklδim − δkmδil)(∂lBm)Bk =

= (∂kBi)Bk − (∂iBk)Bk =

[
(B · ∇)B− 1

2
∇|B|2

]
i

(∇×B)×B = (B · ∇)B− 1

2
∇|B|2 = (B · ∇)B + B(∇ ·B)− 1

2
∇|B|2 = ∇ · (BBT )− 1

2
∇|B|2

∇× (v ×B) = (B · ∇)v −B(∇ · v) + v(∇ ·B)− (v · ∇)B = ∇ · (BvT − vBT )

∇ · (ρvvT ) = (∇ · (ρv)) v + ρ(v · ∇)v = −v
∂ρ

∂t
+ ρ(v · ∇)v

So the MHD equations can alternatively be written as:

∂ρ

∂t
+∇ · (ρv) = 0 (5.13)

∂ρv

∂t
+∇ · (ρvvT ) = −∇p+

1

µ

(
∇ · (BBT )− 1

2
∇|B|2

)
+ ρg (5.14)

∂B

∂t
= ∇ · (BvT − vBT ) + η∇2B (5.15)

∇ ·B = 0 (5.16)

One can also introduce a new variable p∗ = p+ 1
2∇|B|

2, that simplifies (5.14) a bit.

5.2.2 Derivation

The above equations can easily be derived. We have the continuity equation:

∂ρ

∂t
+∇ · (ρv) = 0
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Navier-Stokes equations (momentum equation) with the Lorentz force on the right-hand side:

ρ

(
∂v

∂t
+ (v · ∇)v

)
= −∇p+ j×B + ρg

where the current density j is given by the Maxwell equation (we neglect the displacement current ∂E∂t ):

j =
1

µ
∇×B

and the Lorentz force:

1

σ
j = E + v ×B

from which we eliminate E:

E = −v ×B +
1

σ
j = −v ×B +

1

σµ
∇×B

and put it into the Maxwell equation:

∂B

∂t
= −∇×E

so we get:

∂B

∂t
= ∇× (v ×B)−∇×

(
1

σµ
∇×B

)
assuming the magnetic diffusivity η = 1

σµ is constant, we get:

∂B

∂t
= ∇× (v ×B)− η∇× (∇×B) = ∇× (v ×B) + η

(
∇2B−∇(∇ ·B)

)
= ∇× (v ×B) + η∇2B

where we used the Maxwell equation:

∇ ·B = 0

5.2.3 Finite Element Formulation

We solve the following ideal MHD equations (we use p∗ = p+ 1
2∇|B|

2, but we drop the star):

∂u

∂t
+ (u · ∇)u− (B · ∇)B +∇p = 0 (5.17)

∂B

∂t
+ (u · ∇)B− (B · ∇)u = 0 (5.18)

∇ · u = 0 (5.19)

∇ ·B = 0 (5.20)
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If the equation (5.20) is satisfied initially, then it is satisfied all the time, as can be easily proved by applying a
divergence to the Maxwell equation ∂B

∂t = −∇× E (or the equation (5.18), resp. (5.11)) and we get ∂
∂t (∇ ·B) = 0,

so ∇ ·B is constant, independent of time. As a consequence, we are essentially only solving equations (5.17), (5.18)
and (5.19), which consist of 5 equations for 5 unknowns (components of u, p and B).

We discretize in time by introducing a small time step τ and we also linearize the convective terms:

un − un−1

τ
+ (un−1 · ∇)un − (Bn−1 · ∇)Bn +∇p = 0 (5.21)

Bn −Bn−1

τ
+ (un−1 · ∇)Bn − (Bn−1 · ∇)un = 0 (5.22)

∇ · un = 0 (5.23)

Testing (5.21) by the test functions (v1, v2), (5.22) by the functions (C1, C2) and (5.23) by the test function q, we
obtain the following weak formulation:∫

Ω

u1v1

τ
+ (un−1 · ∇)u1v1 − (Bn−1 · ∇)B1v1 − p

∂v1

∂x
dx =

∫
Ω

un−1
1 v1

τ
dx (5.24)∫

Ω

u2v2

τ
+ (un−1 · ∇)u2v2 − (Bn−1 · ∇)B2v2 − p

∂v2

∂y
dx =

∫
Ω

un−1
2 v2

τ
dx

∫
Ω

B1C1

τ
+ (un−1 · ∇)B1C1 − (Bn−1 · ∇)u1C1 dx =

∫
Ω

Bn−1
1 C1

τ
dx (5.25)∫

Ω

B2C2

τ
+ (un−1 · ∇)B2C2 − (Bn−1 · ∇)u2C2 dx =

∫
Ω

Bn−1
2 C2

τ
dx

∫
Ω

∂u1

∂x
q +

∂u2

∂y
q dx = 0 (5.26)

To better understand the structure of these equations, we write it using bilinear and linear forms, as well as take into
account the symmetries of the forms. Then we get a particularly simple structure:

+A(u1, v1) −X(p, v1) −B(B1, v1) = l1(v1)
+A(u2, v2) −Y (p, v2) −B(B2, v2) = l2(v2)

+X(q, u1) +Y (q, u2) = 0
−B(u1, C1) +A(B1, C1) = l4(C1)

−B(u2, C2) +A(B2, C2) = l5(C2)
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where:

A(u, v) =

∫
Ω

uv

τ
+ (un−1 · ∇)uv dx

B(u, v) =

∫
Ω

(Bn−1 · ∇)uv dx

X(u, v) =

∫
Ω

u
∂v

∂x
dx

Y (u, v) =

∫
Ω

u
∂v

∂y
dx

l1(v) =

∫
Ω

un−1
1 v

τ
dx

l2(v) =

∫
Ω

un−1
2 v

τ
dx

l4(v) =

∫
Ω

Bn−1
1 v

τ
dx

l5(v) =

∫
Ω

Bn−1
2 v

τ
dx

E.g. there are only 4 distinct bilinear forms. Schematically we can visualize the structure by:

A -X -B
A -Y -B

X Y
-B A

-B A

In order to solve it with Hermes, we first need to write it in the block form:

a11(u1, v1) + a12(u2, v1) + a13(p, v1) + a14(B1, v1) + a15(B2, v1) = l1(v1)
a21(u1, v2) + a22(u2, v2) + a23(p, v2) + a24(B1, v2) + a25(B2, v2) = l2(v2)
a31(u1, q) + a32(u2, q) + a33(p, q) + a34(B1, q) + a35(B2, q) = l3(q)
a41(u1, C1) + a42(u2, C1) + a43(p, C1) + a44(B1, C1) + a45(B2, C1) = l4(C1)
a51(u1, C2) + a52(u2, C2) + a53(p, C2) + a54(B1, C2) + a55(B2, C2) = l5(C2)

comparing to the above, we get the following nonzero forms:

a11(u1, v1) + 0 + a13(p, v1) + a14(B1, v1) + 0 = l1(v1)
0 + a22(u2, v2) + a23(p, v2) + 0 + a25(B2, v2) = l2(v2)
a31(u1, q) + a32(u2, q) + 0 + 0 + 0 = 0
a41(u1, C1) + 0 + 0 + a44(B1, C1) + 0 = l4(C1)
0 + a52(u2, C2) + 0 + 0 + a55(B2, C2) = l5(C2)
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where:

a11(u1, v1) = A(u1, v1)

a22(u2, v2) = A(u2, v2)

a44(B1, C1) = A(B1, C1)

a55(B2, C1) = A(B2, C2)

a13(p, v1) = −X(p, v1)

a31(u1, q) = X(q, u1)

a23(p, v2) = −Y (p, v2)

a32(u2, q) = Y (q, u2)

a14(B1, v1) = −B(B1, v1)

a41(u1, C1) = −B(u1, C1)

a25(B2, v2) = −B(B2, v2)

a52(u2, C2) = −B(u2, C2)

and l1, ..., l5 are the same as above.

5.3 Compressible Euler Equations

5.3.1 Introduction

The compressible Euler equations are equations for perfect fluid. Perfect fluids have no heat conduction (T i0 = T 0i =
0) and no viscosity (T ij = p1), so in the comoving frame the stress energy tensor is:

Tαβ = diag(ρc2, p, p, p) =
(
ρ+

p

c2

)
uαuβ + pgαβ

(we use gµν = diag(−1, 1, 1, 1)). Relativistic Euler equations are given by the conservation of the stress energy tensor
and the particle number conservation:

∂νT
µν = 0

∂µ(nuµ) = 0

By doing the nonrelativistic limit (see Perfect Fluids for a detailed derivation), we get the following Euler equations:

∂ρ

∂t
+∇ · (ρu) = 0

∂(ρu)

∂t
+∇ · (ρuuT ) +∇p− f = 0

∂E

∂t
+∇ · (u(E + p)) = 0

where

E = ρe+ 1
2ρu

2

is the total energy per unit volume, composed of the kinetic energy per unit volume ( 1
2ρu

2) and the internal energy per
unit volume (ρe), where e is the internal energy per unit mass (e = U

nM ). The energy E doesn’t contain the rest mass
energy, but all other energies are hidden in the internal energy.

We use the ideal gas equations, so:

e = Tcv

p =
n

V
R̄T =

nM

V

R̄

M
T = ρRT = ρR

e

cv
=
R

cv
(E − 1

2ρu
2)
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where n is the number of moles of gas, M is the molar mass of the gas (i.e. a mass of one mole of the gas, e.g. for
dry air we get M = 28.956 g/mol, as it is mainly composed of 20% of oxygen with atomic mass 16 and 78% of
nitrogen with atomic mass 14, both form diatomic molecules, so the molecular mass is twice the atomic mass giving
the total of 0.2 · 2 · 16 + 0.78 · 2 · 14 = 28.24, the rest is given by the other components and one also has to average
over all isotopes), R̄ = NAkB

.
= 8.3145 J

K mol is the ideal gas constant (NA is the Avogadro constant and kB is the
Boltzmann constant), R = R̄

M is the specific ideal gas constant (e.g. for dry air we getR = 8.3145
28.956

J
g K

.
= 287.14 J

kg K ),
ρ = nM

V = p
RT is the density of the gas (e.g. for dry air at the pressure 105 Pa and temperature 22 ◦C we get ρ =

105

287.14·(22+273.15)
kg
m3 = 1.18 kg

m3 ), cv is the specific heat capacity at constant volume (i.e. the amount of energy needed
to heat one kg by one Kelvin at constant volume, e.g. for dry air the experimental value is about cv = 717.5 J

kg K ), V
is the volume and T is the temperature of the gas. Of those, V , n, M , R, R̄ are constants, ρ, e, E and T are functions
of (t, x, y, z).

Here are the SI units of the various terms in the Euler equations:

[u] = m s−1

[ρ] = kg m−3

N = kg m s−2

J = N m = kg m2 s−2

[p] = N m−2 = kg m−1 s−2

[ 1
2ρu

2] = [ρ][u]2 = kg m−3 m2 s−2 = kg m−1 s−2

[E] = J m−3 = kg m−1 s−2

[R] = J kg−1 K−1 = m2 s−2 K−1

[cv] = J kg−1 K−1 = m2 s−2 K−1

[e] =
[E]

[ρ]
=

kg m−1 s−2

kg m−3
= m2 s−2

In order to calculate the specific heat ratio κ, we use R = cp − cv:

κ =
cp
cv

=
cv +R

cv
= 1 +

R

cv

and the speed of sound is:

c =

√
κ
p

ρ

5.3.2 Dimensionless Euler Equations

We choose 3 constants lr, ur and ρr - characteristic length of the domain, velocity and density. Now we multiply the
Euler equations with proper combinations of these constants as follows:[

∂ρ

∂t
+∇ · (ρu)

]
lr
ρrur

= 0[
∂(ρu)

∂t
+∇ · (ρuuT ) +∇p− f

]
lr
ρru2

r

= 0[
∂E

∂t
+∇ · (u(E + p))

]
lr
ρru3

r

= 0
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This is equal to:

∂ρ̃

∂t̃
+ ∇̃ · (ρ̃ũ) = 0

∂(ρ̃ũ)

∂t̃
+ ∇̃ · (ρ̃ũũT ) + ∇̃p̃− f̃ = 0

∂Ẽ

∂t̃
+ ∇̃ · (ũ(Ẽ + p̃)) = 0

where:

tr =
lr
ur

t̃ =
t

tr

ρ̃ =
ρ

ρr

ũ =
u

ur

∇̃ = lr∇

Ẽ =
E

ρru2
r

p̃ =
p

ρru2
r

f̃ = f
lr
ρru2

r

In particular, if f = (0, 0,−ρg), then

f̃ = (0, 0,−ρ̃g̃)

g̃ = g
lr
u2
r

= g
t2r
lr

So the dimensionless Euler equations look exactly the same as the original ones, we just need to rescale all the
quantities using the relations above.

5.3.3 Conservative Form of the Euler Equations

We can write the Euler equations as:

∂w

∂t
+
∂fx
∂x

+
∂fy
∂y

+
∂fz
∂z

+ g = 0
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where:

w =


%
ρu1

ρu2

ρu3

E

 =


w0

w1

w2

w3

w4



fx =


ρu1

ρu2
1 + p

ρu1u2

ρu1u3

u1(E + p)

 =


w1

w2
1

w0
+ p

w1w2

w0
w1w3

w0
w1

w0
(w4 + p)



fy =


ρu2

ρu2u1

ρu2
2 + p

ρu2u3

u2(E + p)

 =


w2
w2w1

w0
w2

2

w0
+ p

w2w3

w0
w2

w0
(w4 + p)



fz =


ρu3

ρu3u1

ρu3u2

ρu2
3 + p

u3(E + p)

 =


w3
w3w1

w0
w3w2

w0
w2

3

w0
+ p

w3

w0
(w4 + p)



g =


0
−fx
−fy
−fz

0


p =

R

cv

(
E − 1

2ρ
(
u2

1 + u2
2 + u3

3

))
=
R

cv

(
w4 −

w2
1 + w2

2 + w2
3

2w0

)
We solve for the unknowns w0, w1, w2, w3 and w4 as functions of (t, x, y, z), the rest (R, cv , fx, fy , fz) are either
constants or depend on the unknowns. In order to convert from the physical quantities ρ, u1, u2, u3, E and p to w0,
..., w4, we use:

w0 = ρ

w1 = ρu1

w2 = ρu2

w3 = ρu3

w4 = E = p
cv
R

+ 1
2ρ
(
u2

1 + u2
2 + u2

3

)

5.3. Compressible Euler Equations 91



Theoretical Physics Reference, Release 0.1

the opposite conversion is:

ρ = w0

u1 =
w1

w0

u2 =
w2

w0

u3 =
w3

w0

E = w4

p =
R

cv

(
w4 −

w2
1 + w2

2 + w2
3

2w0

)
Sometimes people also use u, v and w instead of u1, u2 and u3.

Note: ρu ≡ j, where j is the fluid density current (it’s a 3-vector) and also wµ ≡ jµ (here wµ is the same as wµ, e.g.
we are a bit sloppy about the notation), where jµ is the density 4-current (e.g. the first 4 components of w are exactly
the components of the 4-current jµ):

jµ = ρvµ = ργ(c,u) = γ


cρ
ρu1

ρu2

ρu3


where as usual µ = 0, 1, 2, 3 is the relativistic index, c is the speed of light, and in the nonrelativistic limit (c → ∞)
we get γ → 1 and the remaining c in j0 will cancel with c in ∂0 = 1

c
∂
∂t , so it will not be present in the final equations

(that involve terms like ∂µjµ). We can also just set c = 1 as usual in relativistic physics.

5.3.4 Weak Formulation

The Euler equations:

∂w

∂t
+
∂fx
∂x

+
∂fy
∂y

+
∂fz
∂z

+ g = 0

are nonlinear. The time-derivative is approximated using the implicit Euler method

wn+1 −wn

τ
+
∂fx(wn+1)

∂x
+
∂fy(wn+1)

∂y
+
∂fz(w

n+1)

∂z
+ g = 0

The vector-valued test functions for the above system of equations have the form:
ϕ0

0
0
0
0

 ,


0
ϕ1

0
0
0

 ,


0
0
ϕ2

0
0

 ,


0
0
0
ϕ3

0

 ,


0
0
0
0
ϕ4


After multiplying the equation system with the test functions and integrating over the domain Ω, we obtain (here the
index i = 0, 1, 2, 3, 4 is numbering the 5 equations, so we are not summing over it):∫

Ω

wn+1
i − wni

τ
ϕi +

∂
(
fx(wn+1)

)
i

∂x
ϕi +

∂
(
fy(wn+1)

)
i

∂y
ϕi +

∂
(
fz(w

n+1)
)
i

∂z
ϕi + giϕ

i d3x = 0

Now we integrate by parts:∫
Ω

wn+1
i − wni

τ
ϕi −

(
fx(wn+1)

)
i

∂ϕi

∂x
−
(
fy(wn+1)

)
i

∂ϕi

∂y
−
(
fz(w

n+1)
)
i

∂ϕi

∂z
+ giϕ

i d3x+

+

∫
∂Ω

(
fx(wn+1)

)
i
ϕi nx +

(
fy(wn+1)

)
i
ϕi ny +

(
fz(w

n+1)
)
i
ϕi nz d2x = 0
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where n = (nx, ny, nz) is the outward surface normal to ∂Ω. Rearranging:∫
Ω

wn+1
i

τ
ϕi −

(
fx(wn+1)

)
i

∂ϕi

∂x
−
(
fy(wn+1)

)
i

∂ϕi

∂y
−
(
fz(w

n+1)
)
i

∂ϕi

∂z
d3x+

+

∫
∂Ω

(
fx(wn+1)

)
i
ϕi nx +

(
fy(wn+1)

)
i
ϕi ny +

(
fz(w

n+1)
)
i
ϕi nz d2x =

∫
Ω

wni
τ
ϕi − giϕi d3x

We can then linearize this for example by taking the flux jacobians Ax(wn+1) on the previous time level Ax(wn).

The finite element formulation is obtained from here by replacing in the standard way the unknown solution wn+1 by
a piecewise-polynomial unknown function

wn+1
h =

N∑
k=1

ykψk,

where ψk are the basis functions of the piecewise-polynomial finite element space. This turns the above weak for-
mulation into a finite number of nonlinear algebraic equations of the form F (Y ) = 0 that will be solved using the
Newton’s method.

Explicit Method

We also derive the weak formulation for the explicit method. Euler equations:

∂w

∂t
+
∂fx
∂x

+
∂fy
∂y

+
∂fz
∂z

+ g = 0

The time-derivative is approximated using the explicit Euler method

wn+1 −wn

τ
+
∂fx(wn)

∂x
+
∂fy(wn)

∂y
+
∂fz(w

n)

∂z
+ g = 0

The vector-valued test functions for the above system of equations have the form:
ϕ0

0
0
0
0

 ,


0
ϕ1

0
0
0

 ,


0
0
ϕ2

0
0

 ,


0
0
0
ϕ3

0

 ,


0
0
0
0
ϕ4


After multiplying the equation system with the test functions and integrating over the domain Ω, we obtain (here the
index i = 0, 1, 2, 3, 4 is numbering the 5 equations, so we are not summing over it):∫

Ω

wn+1
i − wni

τ
ϕi +

∂ (fx(wn))i
∂x

ϕi +
∂ (fy(wn))i

∂y
ϕi +

∂ (fz(w
n))i

∂z
ϕi + giϕ

i d3x = 0

Now we integrate by parts:∫
Ω

wn+1
i − wni

τ
ϕi − (fx(wn))i

∂ϕi

∂x
− (fy(wn))i

∂ϕi

∂y
− (fz(w

n))i
∂ϕi

∂z
+ giϕ

i d3x+

+

∫
∂Ω

(fx(wn))i ϕ
i nx + (fy(wn))i ϕ

i ny + (fz(w
n))i ϕ

i nz d2x = 0

where n = (nx, ny, nz) is the outward surface normal to ∂Ω. Rearranging:∫
Ω

wn+1
i

τ
ϕi d3x =

∫
Ω

wni
τ
ϕi + (fx(wn))i

∂ϕi

∂x
+ (fy(wn))i

∂ϕi

∂y
+ (fz(w

n))i
∂ϕi

∂z
− giϕi d3x+

−
∫
∂Ω

(fx(wn))i ϕ
i nx + (fy(wn))i ϕ

i ny + (fz(w
n))i ϕ

i nz d2x
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5.3.5 Flux Jacobians

Now we write the spatial derivatives using the so called flux Jacobians Ax, Ay and Az:

∂fx
∂x

=
∂fx
∂w

∂w

∂x
≡ Ax

∂w

∂x

Ax = Ax(w) ≡ ∂fx
∂w

Similarly for y and z, so we get:

∂w

∂t
+ Ax

∂w

∂x
+ Ay

∂w

∂y
+ Az

∂w

∂z
+ g = 0

One nice thing about these particular fx, fy and fz functions is that they are homogeneous of degree 1:

fx(λw) = λ fx(w)

so the Euler equation/formula for the homogeneous function is:

w · ∂fx(w)

∂w
= fx(w)

w ·Ax = fx(w)

So both the fx and it’s derivative can be nicely factored out using the flux Jacobian:

fx = Ax w

∂fx
∂x

= Ax
∂w

∂x

by differentiating the first equation and substracting the second, we get:

∂Ax

∂x
w = 0

similarly for y and z. To calculate the Jacobians, we’ll need:

∂p

∂w
=
R

cv

(
w2

1+w2
2+w2

3

2w2
0

−w1

w0
−w2

w0
−w3

w0
1
)

then we can calculate the Jacobians (and we substitute for p):

Ax(w) =
∂fx
∂w

=



0 1 0 0 0

−w
2
1

w2
0

+ R
cv

w2
1+w2

2+w2
3

2w2
0

2w1

w0
− R

cv
w1

w0
− R
cv
w2

w0
− R
cv
w3

w0

R
cv

−w1w2

w2
0

w2

w0

w1

w0
0 0

−w1w3

w2
0

w3

w0
0 w1

w0
0

−w1w4

w2
0
− w1

w2
0

R
cv

(
w4 − w2

1+w2
2+w2

3

2w0

)
+ w1

w0

R
cv

w2
1+w2

2+w2
3

2w2
0

w4

w0
+ 1

w0

R
cv

(
w4 − w2

1+w2
2+w2

3

2w0

)
− R

cv

w2
1

w2
0
− R
cv
w1w2

w2
0

− R
cv
w1w3

w2
0

w1

w0
+ R

cv
w1

w0



Ay(w) =
∂fy
∂w

=



0 0 1 0 0
−w2w1

w2
0

w2

w0

w1

w0
0 0

−w
2
2

w2
0

+ R
cv

w2
1+w2

2+w2
3

2w2
0

− R
cv
w1

w0

2w2

w0
− R

cv
w2

w0
− R
cv
w3

w0

R
cv

−w2w3

w2
0

0 w3

w0

w2

w0
0

−w2w4

w2
0
− w2

w2
0

R
cv

(
w4 − w2

1+w2
2+w2

3

2w0

)
+ w2

w0

R
cv

w2
1+w2

2+w2
3

2w2
0

− R
cv
w2w1

w2
0

w4

w0
+ 1

w0

R
cv

(
w4 − w2

1+w2
2+w2

3

2w0

)
− R

cv

w2
2

w2
0
− R
cv
w2w3

w2
0

w2

w0
+ R

cv
w2

w0



Az(w) =
∂fz
∂w

=



0 0 0 1 0
−w3w1

w2
0

w3

w0
0 w1

w0
0

−w3w2

w2
0

0 w3

w0

w2

w0
0

−w
2
3

w2
0

+ R
cv

w2
1+w2

2+w2
3

2w2
0

− R
cv
w1

w0
− R
cv
w2

w0

2w3

w0
− R

cv
w3

w0

R
cv

−w3w4

w2
0
− w3

w2
0

R
cv

(
w4 − w2

1+w2
2+w2

3

2w0

)
+ w3

w0

R
cv

w2
1+w2

2+w2
3

2w2
0

− R
cv
w3w1

w2
0

− R
cv
w3w2

w2
0

w4

w0
+ 1

w0

R
cv

(
w4 − w2

1+w2
2+w2

3

2w0

)
− R

cv

w2
3

w2
0

w3

w0
+ R

cv
w3

w0


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5.3.6 2D Version of the Equations

∂w

∂t
+
∂fx
∂x

+
∂fy
∂y

+ g = 0

where:

w =


%
ρu1

ρu2

E

 =


w0

w1

w2

w3



fx =


ρu1

ρu2
1 + p

ρu1u2

u1(E + p)

 =


w1

w2
1

w0
+ p

w1w2

w0
w1

w0
(w3 + p)



fy =


ρu2

ρu2u1

ρu2
2 + p

u2(E + p)

 =


w2
w2w1

w0
w2

2

w0
+ p

w2

w0
(w3 + p)



g =


0
−fx
−fy

0


p =

R

cv

(
E − 1

2ρ
(
u2

1 + u2
2

))
=
R

cv

(
w3 −

w2
1 + w2

2

2w0

)
Discretizing the time derivative:

wn+1 −wn

τ
+
∂fx(wn+1)

∂x
+
∂fy(wn+1)

∂y
+ g = 0

The vector-valued test functions for the above system of equations have the form:
ϕ0

0
0
0

 ,


0
ϕ1

0
0

 ,


0
0
ϕ2

0

 ,


0
0
0
ϕ3


After multiplying the equation system with the test functions and integrating over the domain Ω, we obtain:∫

Ω

wn+1
i − wni

τ
ϕi +

∂
(
fx(wn+1)

)
i

∂x
ϕi +

∂
(
fy(wn+1)

)
i

∂y
ϕi + giϕ

i d2x = 0

Now we integrate by parts:∫
Ω

wn+1
i − wni

τ
ϕi −

(
fx(wn+1)

)
i

∂ϕi

∂x
−
(
fy(wn+1)

)
i

∂ϕi

∂y
+ giϕ

i d2x+

+

∫
∂Ω

(
fx(wn+1)

)
i
ϕi nx +

(
fy(wn+1)

)
i
ϕi ny dx = 0

where n = (nx, ny) is the outward surface normal to ∂Ω. Rearranging:∫
Ω

wn+1
i

τ
ϕi −

(
fx(wn+1)

)
i

∂ϕi

∂x
−
(
fy(wn+1)

)
i

∂ϕi

∂y
d2x+

+

∫
∂Ω

(
fx(wn+1)

)
i
ϕi nx +

(
fy(wn+1)

)
i
ϕi ny dx =

∫
Ω

wni
τ
ϕi − giϕi d2x
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The 2D flux Jacobians are:

Ax(w) =
∂fx
∂w

=


0 1 0 0

−w
2
1

w2
0

+ R
cv

w2
1+w2

2

2w2
0

2w1

w0
− R

cv
w1

w0
− R
cv
w2

w0

R
cv

−w1w2

w2
0

w2

w0

w1

w0
0

−w1w3

w2
0
− w1

w2
0

R
cv

(
w3 − w2

1+w2
2

2w0

)
+ w1

w0

R
cv

w2
1+w2

2

2w2
0

w3

w0
+ 1

w0

R
cv

(
w3 − w2

1+w2
2

2w0

)
− R

cv

w2
1

w2
0
− R
cv
w1w2

w2
0

w1

w0
+ R

cv
w1

w0



Ay(w) =
∂fy
∂w

=


0 0 1 0

−w2w1

w2
0

w2

w0

w1

w0
0

−w
2
2

w2
0

+ R
cv

w2
1+w2

2

2w2
0

− R
cv
w1

w0

2w2

w0
− R

cv
w2

w0

R
cv

−w2w3

w2
0
− w2

w2
0

R
cv

(
w3 − w2

1+w2
2

2w0

)
+ w2

w0

R
cv

w2
1+w2

2

2w2
0

− R
cv
w2w1

w2
0

w3

w0
+ 1

w0

R
cv

(
w3 − w2

1+w2
2

2w0

)
− R

cv

w2
2

w2
0

w2

w0
+ R

cv
w2

w0



5.3.7 Sea Breeze Modeling

In our 2D model we make the following assumptions:

fx = 0

fy = −ρg = −w0g

and the boundary condition is as follows:

T ′(x, t) =

(
A

2

)
sin

(
π(t− t0)

24

)(
1 + tanh

(
S(x)

L

))
T (x) = T0 + T ′(x, t)

The weak formulation in 2D is (here i = 0, 1, 2, 3):∫
Ω

wn+1
i

τ
ϕi − (Ax(wn))ij w

n+1
j

∂ϕi

∂x
− (Az(w

n))ij w
n+1
j

∂ϕi

∂z
d2x+

+

∫
∂Ω

(Ax(wn))ij w
n+1
j ϕi nx + (Az(w

n))ij w
n+1
j ϕi nz dx =

∫
Ω

wni
τ
ϕi − giϕi d2x

In order to specify the input forms for Hermes, we’ll write the weak formulation as:

B00(w0, ϕ
0) +B01(w1, ϕ

0) +B02(w2, ϕ
0) +B03(w3, ϕ

0) = l0(ϕ0)

B10(w0, ϕ
1) +B11(w1, ϕ

1) +B12(w2, ϕ
1) +B13(w3, ϕ

1) = l1(ϕ1)

B20(w0, ϕ
2) +B21(w1, ϕ

2) +B22(w2, ϕ
2) +B23(w3, ϕ

2) = l2(ϕ2)

B30(w0, ϕ
3) +B31(w1, ϕ

3) +B32(w2, ϕ
3) +B33(w3, ϕ

3) = l3(ϕ3)

where the forms are (we write wi instead of wn+1
i ):

l0(ϕ0) =

∫
Ω

wn0ϕ
0

τ
d2x

l1(ϕ1) =

∫
Ω

wn1ϕ
1

τ
d2x

l2(ϕ2) =

∫
Ω

wn2ϕ
2

τ
+ ρgϕ2 d2x

l3(ϕ3) =

∫
Ω

wn3ϕ
3

τ
d2x

Bij(wj , ϕ
i) =

∫
Ω

wi
τ
ϕiδij − (Ax(wn))ij wj

∂ϕi

∂x
− (Az(w

n))ij wj
∂ϕi

∂z
d2x
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In the last expression we do not sum over i nor j. In particular:

B00(w0, ϕ
0) =

∫
Ω

w0

τ
ϕ0 − (Ax(wn))00 w0

∂ϕ0

∂x
− (Az(w

n))00 w0
∂ϕ0

∂z
d2x =

∫
Ω

w0

τ
ϕ0 d2x

B01(w1, ϕ
0) =

∫
Ω

− (Ax(wn))01 w1
∂ϕ0

∂x
− (Az(w

n))01 w1
∂ϕ0

∂z
d2x =

∫
Ω

− (Ax(wn))01 w1
∂ϕ0

∂x
d2x

B02(w2, ϕ
0) =

∫
Ω

− (Ax(wn))02 w2
∂ϕ0

∂x
− (Az(w

n))02 w2
∂ϕ0

∂z
d2x =

∫
Ω

− (Az(w
n))02 w2

∂ϕ0

∂z
d2x

B03(w3, ϕ
0) =

∫
Ω

− (Ax(wn))03 w3
∂ϕ0

∂x
− (Az(w

n))03 w3
∂ϕ0

∂z
d2x = 0

B10(w0, ϕ
1) =

∫
Ω

− (Ax(wn))10 w0
∂ϕ1

∂x
− (Az(w

n))10 w0
∂ϕ1

∂z
d2x

B11(w1, ϕ
1) =

∫
Ω

w1

τ
ϕ1 − (Ax(wn))11 w1

∂ϕ1

∂x
− (Az(w

n))11 w1
∂ϕ1

∂z
d2x

· · ·

5.3.8 Boundary Conditions

We rewrite the boundary integral by rotating coordinates, so that the flow is only in the x direction (thus we only have
fx): ∫

∂Ω

(fx(w))i ϕ
i nx + (fy(w))i ϕ

i ny + (fz(w))i ϕ
i nz d2x =

=

∫
∂Ω

T−1fx(Tw)ϕi d2x

Now we need to approximate fx(Tw) somehow. We do that by solving the following 1D problem (Riemann problem):

∂w

∂t
+

∂

∂x
f(w) = 0

or:

∂w

∂t
+ A(w)

∂w

∂x
= 0 (5.27)

w(x, t) =


w0

w1

w2

w3

w4


And we approximate fx(w) = f(w(0, t)). The initial condition is:

w(x, 0) =

{
wL x < 0

wR x > 0
= wL(1−H(x)) + wRH(x)
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Now we write:

w(x, t) =
∑
i

ξi(x, t)ri

wL =
∑
i

αiri

wR =
∑
i

βiri

ξi(x, 0) =

{
αi x < 0

βi x > 0

and substitute into (5.27): ∑
i

(
∂ξi

∂t
+ A(w)

∂ξi

∂x

)
ri = 0

∑
i

(
∂ξi

∂t
+ λi(w)

∂ξi

∂x

)
ri = 0

so we get:

∂ξi

∂t
+ λi(w)

∂ξi

∂x
= 0

This is a nonlinear problem, that cannot be solved exactly. First, let A doesn’t depend on w. Then also λi are a
constants:

∂ξi

∂t
+ λi

∂ξi

∂x
= 0

and the solution is constant along the characteristic x(t) = λit+ c for t > 0 and we get:

ξi(x, t) = ξi(x− λit, 0) =

{
αi x− λit < 0

βi x− λit > 0
= αi(1−H(x− λit)) + βiH(x− λit)

and

w(x, t) =
∑
i

ξi(x, t)ri =
∑
i

(αi(1−H(x− λit)) + βiH(x− λit)) ri

w(0, t) =
∑
i

(αi(1−H(−λit)) + βiH(−λit)) ri =

=
∑
i

(αiH(λit) + βiH(−λit)) ri =

=
∑
i

(αiH(λi) + βiH(−λi)) ri =

=

n∑
i=k+1

αiri +

k∑
i=1

βiri

so:

f(w(0, t)) = Aw(0, t) =

n∑
i=k+1

Aαiri +

k∑
i=1

Aβiri

=

n∑
i=k+1

λiαiri +

k∑
i=1

λiβiri =

= A+
n∑
i=1

αiri + A−
n∑
i=1

βiri =

= A+wL + A−wR
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In the nonlinear case we cannot solve it exactly, but we can approximate the solution by:

f(w(0, t)) = f+(wL) + f−(wR) =

= f(wR)−
∫ wR

wL

A+(w)dw =

= f(wL) +

∫ wR

wL

A−(w)dw ≈

≈ f(wL) + A−(wR)wR −A−(wL)wL (5.28)

Let’s say the domain is for x < 0 and we are applying the BC condition from x > 0. Then wL is taken from the
solution and wR is prescribed, for example at the bottom it could be:

wR =


ρ
ρu1

0
0
E


Now we need to calculate A−. First we write:

Ax = RDxR
−1

A−x = RD−x R−1

Dx(w) =
w1

w0
1+ diag(−c, 0, 0, 0, c) =


u1 − c 0 0 0 0

0 u1 0 0 0
0 0 u1 0 0
0 0 0 u1 0
0 0 0 0 u1 + c


Dx(w)− =

{
diag(w1

w0
− c, w1

w0
, w1

w0
, w1

w0
, 0) w1 < 0

diag(w1

w0
− c, 0, 0, 0, 0) w1 > 0

Explicit forms of the matrices:

R =

 1 1 1 1 1
u−c u u u c+u
v v v−c v v
w w w w−c w

−cu− c2

1−κ+ 1
2u

2+ 1
2 v

2+ 1
2w

2 1
2u

2+ 1
2 v

2+ 1
2w

2 −cv+ 1
2u

2+ 1
2 v

2+ 1
2w

2 −cw+ 1
2u

2+ 1
2 v

2+ 1
2w

2 cu− c2

1−κ+ 1
2u

2+ 1
2 v

2+ 1
2w

2


R−1 =

1

c2


1
2 cu−

1
4u

2− 1
4 v

2− 1
4w

2+ 1
4κu

2+ 1
4κv

2+ 1
4κw

2 1
2u−

1
2 c−

1
2κu

1
2 v−

1
2κv

1
2w−

1
2κw −

1
2 + 1

2κ

−cv−cw+c2+ 1
2u

2+ 1
2 v

2+ 1
2w

2− 1
2κu

2− 1
2κv

2− 1
2κw

2 −u+κu c−v+κv c−w+κw 1−κ
cv 0 −c 0 0
cw 0 0 −c 0

− 1
2 cu−

1
4u

2− 1
4 v

2− 1
4w

2+ 1
4κu

2+ 1
4κv

2+ 1
4κw

2 1
2 c+

1
2u−

1
2κu

1
2 v−

1
2κv

1
2w−

1
2κw −

1
2 + 1

2κ


Dx =

(
u−c 0 0 0 0

0 u 0 0 0
0 0 u 0 0
0 0 0 u 0
0 0 0 0 c+u

)

Ax =


0 1 0 0 0

− 3
2u

2− 1
2 v

2− 1
2w

2+ 1
2κu

2+ 1
2κv

2+ 1
2κw

2 3u−κu v−κv w−κw −1+κ
−uv v u 0 0
−uw w 0 u 0

−2uv2−2uw2+2uc2−uκ2v2−uκ2w2+3κuv2+3κuw2−2u3−κ2u3+3κu3

2−2κ
v2+w2−2c2+3u2−κv2−κw2−5κu2+2κ2u2

2−2κ uv−κuv uw−κuw κu


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For u1 < 0:

D−x =

(
u−c 0 0 0 0

0 u 0 0 0
0 0 u 0 0
0 0 0 u 0
0 0 0 0 0

)

A−x =


2cv2+2cw2+2uv2+2uw2+4uc2+6cu2−2cκu2−2cκv2−2cκw2−2κuv2−2κuw2+2u3−2κu3

8c2
−2cu+cκu+c2−u2+κu2

2c2
−cv−uv+cκv+κuv

2c2
−cw−uw+cκw+κuw

2c2
c+u−cκ−κu

2c2

−2c2u2−2c2v2−2c2w2+2u2v2+2u2w2−2κu2v2−2κu2w2+2κc2u2+2κc2v2+2κc2w2+4cuv2+4cuw2−4cκuv2−4cκuw2+4uc3+8cu3−4cκu3+2u4−2κu4

8c2
−3cu2+3uc2−κuc2+2cκu2−c3−u3+κu3

2c2
−2cuv+2cκuv+vc2−vu2+κvu2−κvc2

2c2
−2cuw+2cκuw+wc2−wu2+κwu2−κwc2

2c2
2cu−2cκu+u2−c2+κc2−κu2

2c2

−4uvc2+2cvw2+2uvw2+6cvu2−2cκvu2−2cκvw2−2κuvw2+2cv3+2uv3+2vu3−2cκv3−2κuv3−2κvu3

8c2
−2cuv+cκuv+vc2−vu2+κvu2

2c2
−cv2−uv2+2uc2+cκv2+κuv2

2c2
−cvw−uvw+cκvw+κuvw

2c2
cv+uv−cκv−κuv

2c2

−4uwc2+2cwv2+2uwv2+6cwu2−2cκwu2−2cκwv2−2κuwv2+2cw3+2uw3+2wu3−2cκw3−2κuw3−2κwu3

8c2
−2cuw+cκuw+wc2−wu2+κwu2

2c2
−cvw−uvw+cκvw+κuvw

2c2
−cw2−uw2+2uc2+cκw2+κuw2

2c2
cw+uw−cκw−κuw

2c2

−2c3u2−2c3v2−2c3w2+2u3v2+2u3w2−6uc2v2−6uc2w2−4κu3v2−4κu3w2−2κc3u2+2cv2w2+2κc3v2+2κc3w2+2uv2w2+2κ2u3v2+2κ2u3w2+6cu2v2+6cu2w2−10cκu2v2−10cκu2w2−4cκv2w2−4κuv2w2−2uc2κ2v2−2uc2κ2w2+2cκ2v2w2+2uκ2v2w2+4cκ2u2v2+4cκ2u2w2+8κuc2v2+8κuc2w2−2c2u3−2c2κ2u3+4κc2u3+cv4+cw4+uv4+uw4+4uc4+5cu4+cκ2v4+cκ2w4+uκ2v4+uκ2w4−8cκu4−2cκv4−2cκw4−2κuv4−2κuw4+3cκ2u4+u5+κ2u5−2κu5

8c2−8κc2
c2v2+c2w2−u2v2−u2w2+3c2u2−κc2v2−κc2w2−κ2u2v2−κ2u2w2−5κc2u2−2cuv2−2cuw2+2κu2v2+2κu2w2+2c2κ2u2−cuκ2v2−cuκ2w2+3cκuv2+3cκuw2−4cu3+2uc3−3cκ2u3+7cκu3−u4−2c4−κ2u4+2κu4

4c2−4κc2
−6cvu2−2cvw2−2uvw2+8uvc2−4κuvc2+2cκvw2+2κuvw2+6cκvu2−2cv3−2uv3−2vu3+4vc3+2cκv3+2κuv3+2κvu3

8c2
−6cwu2−2cwv2−2uwv2+8uwc2−4κuwc2+2cκwv2+2κuwv2+6cκwu2−2cw3−2uw3−2wu3+4wc3+2cκw3+2κuw3+2κwu3

8c2
2cv2+2cw2+2uv2+2uw2+6cu2−6cκu2−2cκv2−2cκw2−2κuv2−2κuw2+4κuc2−4c3+2u3−2κu3

8c2


For u1 > 0:

D−x =

(
u−c 0 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

)

A−x =


−4uc2−2uv2−2uw2+2cv2+2cw2+6cu2−2cκu2−2cκv2−2cκw2+2κuv2+2κuw2−2u3+2κu3

8c2
−2cu+cκu+c2+u2−κu2

2c2
uv−cv+cκv−κuv

2c2
uw−cw+cκw−κuw

2c2
c−u+κu−cκ

2c2

−10c2u2−2c2v2−2c2w2−2u2v2−2u2w2+2κc2u2+2κc2v2+2κc2w2+2κu2v2+2κu2w2+4cuv2+4cuw2−4cκuv2−4cκuw2+4uc3+8cu3−4cκu3−2u4+2κu4

8c2
−3cu2+3uc2−κuc2+2cκu2+u3−c3−κu3

2c2
−2cuv+2cκuv+vc2+vu2−κvc2−κvu2

2c2
−2cuw+2cκuw+wc2+wu2−κwc2−κwu2

2c2
2cu−2cκu−c2−u2+κc2+κu2

2c2

−4uvc2−2uvw2+2cvw2+6cvu2−2cκvu2−2cκvw2+2κuvw2−2uv3−2vu3+2cv3−2cκv3+2κuv3+2κvu3

8c2
−2cuv+cκuv+vc2+vu2−κvu2

2c2
uv2−cv2+cκv2−κuv2

2c2
uvw−cvw+cκvw−κuvw

2c2
cv−uv+κuv−cκv

2c2

−4uwc2−2uwv2+2cwv2+6cwu2−2cκwu2−2cκwv2+2κuwv2−2uw3−2wu3+2cw3−2cκw3+2κuw3+2κwu3

8c2
−2cuw+cκuw+wc2+wu2−κwu2

2c2
uvw−cvw+cκvw−κuvw

2c2
uw2−cw2+cκw2−κuw2

2c2
cw−uw+κuw−cκw

2c2

−2c3u2−2c3v2−2c3w2−2u3v2−2u3w2−2κc3u2−2uc2v2−2uc2w2−2uv2w2−2κ2u3v2−2κ2u3w2+2cv2w2+2κc3v2+2κc3w2+4κu3v2+4κu3w2+6cu2v2+6cu2w2−10cκu2v2−10cκu2w2−4cκv2w2−2uc2κ2v2−2uc2κ2w2−2uκ2v2w2+2cκ2v2w2+4cκ2u2v2+4cκ2u2w2+4κuc2v2+4κuc2w2+4κuv2w2−6c2u3−2c2κ2u3+8κc2u3+cv4+cw4−uv4−uw4+4uc4+5cu4+cκ2v4+cκ2w4−uκ2v4−uκ2w4−8cκu4−2cκv4−2cκw4+2κuv4+2κuw4+3cκ2u4−u5−κ2u5+2κu5

8c2−8κc2
c2v2+c2w2+u2v2+u2w2+3c2u2+κ2u2v2+κ2u2w2−κc2v2−κc2w2−5κc2u2−2cuv2−2cuw2−2κu2v2−2κu2w2+2c2κ2u2−cuκ2v2−cuκ2w2+3cκuv2+3cκuw2−4cu3+2uc3−3cκ2u3+7cκu3+u4−2c4+κ2u4−2κu4

4c2−4κc2
−6cvu2−2cvw2+2uvw2−4κuvc2−2κuvw2+2cκvw2+6cκvu2−2cv3+2uv3+2vu3+4vc3−2κuv3−2κvu3+2cκv3

8c2
−6cwu2−2cwv2+2uwv2−4κuwc2−2κuwv2+2cκwv2+6cκwu2−2cw3+2uw3+2wu3+4wc3−2κuw3−2κwu3+2cκw3

8c2
−2uv2−2uw2+2cv2+2cw2+6cu2−6cκu2−2cκv2−2cκw2+2κuv2+2κuw2+4κuc2−4c3−2u3+2κu3

8c2



Boundary Conditions for the Sea Breeze Model

In the boundary (line) integral we prescribe wn+1
3 using a Dirichlet condition and calculate it at each iteration using:

wn+1
3 = E = ρTcv + 1

2ρu
2 = w0Tcv +

w2
1 + w2

2

2w0

where T (t) is a known function of time (it changes with the day and night) and also prescribe wn+1
1 = 0 on the left

and right end of the domain and wn+1
2 = 0 at the top and bottom.

All the surface integrals turn out to be zero. On the top and bottom edges we have n = (nx, ny) = (0,±1) respectively
and we prescribe w2 = 0, so we get (remember we do not sum over i):∫

∂Ω

(Ax(wn))ij wjϕ
i nx + (Ay(wn))ij wjϕ

i ny dx =

=

∫
∂Ω

(fx(wn))i ϕ
i nx + (fy(wn))i ϕ

i ny dx =

= ±
∫
∂Ω

(fy(wn))i ϕ
i dx

where:

fy =


w2
w2w1

w0
w2

2

w0
+ p

w2

w0
(w3 + p)

 =


0
0
p
0


So all the components i 6= 3 of the surface integral are zero, and for i = 3 the test function ϕ3 is not there, because
we prescribe the Dirichlet BC w3 = 0, so the surface integral vanishes for all i.

Similarly on the left and right edges we have n = (nx, ny) = (±1, 0) respectively and we prescribe w1 = 0, so we
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get (remember we do not sum over i):∫
∂Ω

(Ax(wn))ij wjϕ
i nx + (Ay(wn))ij wjϕ

i ny dx =

=

∫
∂Ω

(fx(wn))i ϕ
i nx + (fy(wn))i ϕ

i ny dx =

= ±
∫
∂Ω

(fx(wn))i ϕ
i dx

where:

fx =


w1

w2
1

w0
+ p

w1w2

w0
w1

w0
(w3 + p)

 =


0
p
0
0


So all the components i 6= 1 of the surface integral are zero, and for i = 1 the test function ϕ1 is not there, because
we prescribe the Dirichlet BC w1 = 0, so the surface integral vanishes for all i.

5.3.9 Newton Method

The residual is:

Fi,m(Y n+1) =

∫
Ω

wi,m(yn+1
m )− wi,m(yn)

τ
ϕi,m − fx,m(w(yn))

∂ϕi,m
∂x

− fy,m(w(yn))
∂ϕi,m
∂y

+ δ3,mgϕi,m dx dy+

−
∫
∂Ω

fx,m(w(yn))ϕi,mνx + fy,m(w(yn))ϕi,mνy dS = 0

where m = 0, 1, 2, 4 numbers the equations, i = 1, 2, ...,M numbers the finite element basis functions, N = 4M ,
Y = (y1

0 , y
1
1 , y

1
2 , y

1
3 , y

2
0 , y

2
1 , ...). The Jacobian is:

J(Y n) =
∂Fi,m
∂yr,s

(Y n) =

∫
Ω

ϕr,s
τ
ϕi,m −Ax,m,s(w(yn))ϕr,s

∂ϕi,m
∂x

−Ay,m,s(w(yn))ϕr,s
∂ϕi,m
∂y

dxdy

+

∫
∂Ω

Ax,m,s(w(yn))ϕr,sϕi,mνx +Ay,m,s(w(yn))ϕr,sϕi,mνy dS

And the Newton method then is:

J(Y n)δY n+1 = −F (Y n)

5.3.10 Older notes

Author: Pavel Solin

Governing Equations and Boundary Conditions

∂

∂t


%
U
W
θ

+
∂

∂x


U

U2

% +Rθ
UW
%
θU
%

+
∂

∂z


W
UW
%

W 2

% +Rθ
θW
%

+


0
0
%g

Rθ
cv

divv

 =


0
0
0
0

 , (5.29)

where % is the air density, v = (u,w) is the velocity, U = %u, W = %w, T is the temperature, θ = %T , and g is the
gravitational acceleration constant. We use the perfect gas state equation p = %RT = Rθ for the pressure.

Boundary conditions are prescribed as follows:
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• edge a: ∂%/∂ν = 0, ∂U/∂ν = 0, W = 0, θ = tanh(x) ∗ sin(πt/86400)

• edges b, c: ∂%/∂ν = 0, U = 0, ∂W/∂ν = 0, ∂θ/∂ν = 0

• edge d: ∂%/∂ν = 0, ∂U/∂ν = 0, W = 0, ∂θ/∂ν = 0

Initial conditions have the form

p(z) = p0 − 11476
z

1000
+ 529.54

( z

1000

)2

− 9.38
( z

1000

)3

,

T (z) = T0 − 8.3194
z

1000
+ 0.2932

( z

1000

)2

− 0.0109
( z

1000

)3

,

%(z) =
p(z)

RT (z)
,

θ(z) = %(z)T (z),

U(z) = 0,

W (z) = 0.

Discretization and the Newton’s Method

We will use the implicit Euler method in time, i.e.,

∂%

∂t
≈ %n+1 − %n

τ

etc. Let’s discuss one equation of (5.29) at a time:

Continuity equation: The weak formulation of

%n+1 − %n

τ
+
∂Un+1

∂x
+
∂Wn+1

∂z
= 0

reads

F %i (Y n+1) =

∫
Ω

%n+1

τ
ϕ%i −

∫
Ω

%n

τ
ϕ%i +

∫
Ω

∂Un+1

∂x
ϕ%i +

∫
Ω

∂Wn+1

∂z
ϕ%i = 0 (5.30)

The global coefficient vector Y n+1 consists of four parts Y %, Y U , YW and Y θ corresponding to the fields %, U , W
and θ, respectively. The same holds for the vector function F which consists of four parts F %, FU , FW and F θ. Thus
the global Jacobi matrix will have a four-by-four block structure. We denote

%n+1 =

N%∑
k=1

y%kϕ
%
k, Un+1 =

NU∑
k=1

yUk ϕ
U
k , Wn+1 =

NW∑
k=1

yWk ϕ
W
k , θn+1 =

Nθ∑
k=1

yθkϕ
θ
k. (5.31)

It follows from (5.30) and (5.31) that

∂F %i
∂y%j

=

∫
Ω

ϕ%j
τ
ϕ%i ,

∂F %i
∂yUj

=

∫
Ω

∂ϕUj
∂x

ϕ%i ,
∂F %i
∂yWj

=

∫
Ω

∂ϕWj
∂z

ϕ%i ,
∂F %i
∂yWj

= 0.

First momentum equation: The second equation of (5.29) has the form

∂U

∂t
+

2U

%

∂U

∂x
− U2

%2

∂%

∂x
+R

∂θ

∂x
+
W

%

∂U

∂z
+
U

%

∂W

∂z
− UW

%2

∂%

∂z
= 0.

After applying the implicit Euler method, we obtain

∂Un+1

τ
− ∂Un

τ
+

2Un+1

%n+1

∂Un+1

∂x
− (Un+1)2

(%n+1)2

∂%n+1

∂x
+R

∂θn+1

∂x
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+
Wn+1

%n+1

∂Un+1

∂z
+
Un+1

%n+1

∂Wn+1

∂z
− Un+1Wn+1

(%n+1)2

∂%n+1

∂z
= 0.

Thus we obtain

∂FUi
∂y%j

= −
∫

Ω

2U

%2

∂U

∂x
ϕ%jϕ

U
i −

∫
Ω

U2

[
(−2)

1

%3

∂%

∂x
ϕ%j +

1

%2

∂ϕ%j
∂x

]
ϕUi

+

∫
Ω

W

%2

∂U

∂z
(−1)ϕ%jϕ

U
i +

∫
Ω

U

%2

∂W

∂z
(−1)ϕ%jϕ

U
i −

∫
Ω

UW

[
(−2)

1

%3

∂%

∂z
ϕ%j +

1

%2

∂ϕ%j
∂z

]
ϕUi .

Analogously,

∂FUi
∂yUj

=

∫
Ω

ϕUj
τ
ϕUi +

∫
Ω

2

%

[
∂U

∂x
ϕUj + U

∂ϕUj
∂x

]
ϕUi −

∫
Ω

2U

%2

∂%

∂x
ϕUj ϕ

U
i

+

∫
Ω

W

%

∂ϕUj
∂z

ϕUi +

∫
Ω

1

%

∂W

∂z
ϕUj ϕ

U
i −

∫
Ω

W

%2

∂%

∂z
ϕUj ϕ

U
i ,

∂FUi
∂yWj

=

∫
Ω

1

%

∂U

∂z
ϕWj ϕ

U
i +

∫
Ω

U

%

∂ϕWj
∂z

ϕUi −
∫

Ω

U

%2

∂%

∂z
ϕWj ϕ

U
i ,

∂FUi
∂yθj

=

∫
Ω

R
∂ϕθj
∂x

ϕUi .

Second momentum equation: The third equation of (5.29) reads

∂W

∂t
+
W

%

∂U

∂x
+
U

%

∂W

∂x
− UW

%2

∂%

∂x
+

2W

%

∂W

∂z
− W 2

%2

∂%

∂x
+R

∂θ

∂z
+ %g = 0.

After applying the implicit Euler method, we obtain

∂Wn+1

τ
− ∂Wn

τ
+
Wn+1

%n+1

∂Un+1

∂x
+
Un+1

%n+1

∂Wn+1

∂x
− Un+1Wn+1

(%n+1)2

∂%n+1

∂x

+
2Wn+1

%n+1

∂Wn+1

∂z
− (Wn+1)2

(%n+1)2

∂%n+1

∂x
+R

∂θn+1

∂z
+ %n+1g = 0.

Thus we obtain

∂FWi
∂y%j

= +

∫
Ω

W

%2

∂U

∂x
(−1)ϕ%jϕ

W
i +

∫
Ω

U

%2

∂W

∂x
(−1)ϕ%jϕ

W
i −

∫
Ω

2W

%2

∂W

∂x
ϕ%jϕ

W
i

−
∫

Ω

UW

[
(−2)

1

%3

∂%

∂x
ϕ%j +

1

%2

∂ϕ%j
∂x

]
ϕWi −

∫
Ω

W 2

[
(−2)

1

%3

∂%

∂z
ϕ%j +

1

%2

∂ϕ%j
∂z

]
ϕWi +

∫
Ω

gϕ%jϕ
W
i .

Analogously,

∂FWi
∂yUj

=

∫
Ω

W

%

∂ϕUj
∂x

ϕWi +

∫
Ω

1

%

∂W

∂x
ϕUj ϕ

W
i −

∫
Ω

W

%2

∂%

∂x
ϕUj ϕ

W
i ,
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∂FWi
∂yWj

=

∫
Ω

ϕWj
τ
ϕWi +

∫
Ω

1

%

∂U

∂x
ϕWj ϕ

W
i +

∫
Ω

U

%

∂ϕWj
∂x

ϕWi −
∫

Ω

U

%2

∂%

∂x
ϕWj ϕ

W
i

+

∫
Ω

2

%

[
∂W

∂z
ϕWj +W

∂ϕWj
∂z

]
ϕWi −

∫
Ω

2W

%2

∂%

∂z
ϕWj ϕ

W
i ,

∂FWi
∂yθj

=

∫
Ω

R
∂ϕθj
∂z

ϕWi .

Internal energy equation: The last equation of (5.29) has the form

∂θ

∂t
+ div(θv) +

Rθ

cv
divv = 0

where θ = %T . This can be written equivalently as

∂θ

∂t
+∇θ · v + γθdivv = 0.

Written in terms of single derivatives, this is

∂θ

∂t
+
∂θ

∂x

U

%
+
∂θ

∂z

W

%
+ γθ

∂

∂x

(
U

%

)
+ γθ

∂

∂z

(
W

%

)
= 0,

i.e.,

∂θ

∂t
+
∂θ

∂x

U

%
+
∂θ

∂z

W

%
+ γ

θ

%

∂U

∂x
− γ θU

%2

∂%

∂x
+ γ

θ

%

∂W

∂z
− γ θW

%2

∂%

∂z
= 0.

Weak formulation:

F θi (Y ) =

∫
Ω

θn+1

τ
ϕθi −

∫
Ω

θn

τ
ϕθi +

∫
Ω

∂θn+1

∂x

Un+1

%n+1
ϕθi +

∫
Ω

∂θn+1

∂z

Wn+1

%n+1
ϕθi

+

∫
Ω

γ
θn+1

%n+1

∂Un+1

∂x
ϕθi −

∫
Ω

γ
θn+1Un+1

(%n+1)2

∂%n+1

∂x
ϕθi +

∫
Ω

γ
θn+1

%n+1

∂Wn+1

∂z
ϕθi −

∫
Ω

γ
θn+1Wn+1

(%n+1)2

∂%n+1

∂z
ϕθi = 0.

For the derivatives of the weak form we obtain:

∂F θi
∂y%j

= −
∫

Ω

∂θ

∂x

U

%2
ϕ%jϕ

θ
i −

∫
Ω

∂θ

∂z

W

%2
ϕ%jϕ

θ
i −

∫
Ω

γ
θ

%2

∂U

∂x
ϕ%jϕ

θ
i −

∫
Ω

γ
θ

%2

∂W

∂z
ϕ%jϕ

θ
i

+

∫
Ω

2γ
θU

%3

∂%

∂x
ϕ%jϕ

θ
i −

∫
Ω

γ
θU

%2

ϕ%j
∂x
ϕθi +

∫
Ω

2γ
θW

%3

∂%

∂z
ϕ%jϕ

θ
i −

∫
Ω

γ
θW

%2

ϕ%j
∂z
ϕθi .

∂F θi
∂yUj

=

∫
Ω

∂θ

∂x

1

%
ϕUj ϕ

θ
i +

∫
Ω

γ
θ

%

ϕUj
∂x

ϕθi −
∫

Ω

γ
θ

%2

∂%

∂x
ϕUj ϕ

θ
i .

∂F θi
∂yWj

=

∫
Ω

∂θ

∂z

1

%
ϕWj ϕ

θ
i +

∫
Ω

γ
θ

%

ϕWj
∂z

ϕθi −
∫

Ω

γ
θ

%2

∂%

∂z
ϕWj ϕ

θ
i .

∂F θi
∂yθj

=

∫
Ω

1

τ
ϕθjϕ

θ
i +

∫
Ω

U

%

ϕθj
∂x
ϕθi +

∫
Ω

W

%

ϕθj
∂z
ϕθi

+

∫
Ω

γ

%

∂U

∂x
ϕθjϕ

θ
i +

∫
Ω

γ

%

∂W

∂z
ϕθjϕ

θ
i −

∫
Ω

γU

%2

∂%

∂x
ϕθjϕ

θ
i −

∫
Ω

γW

%2

∂%

∂z
ϕθjϕ

θ
i .
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CHAPTER

SIX

QUANTUM FIELD THEORY AND
QUANTUM MECHANICS

6.1 Introduction

The aim of these (work in progress) notes is to use the Standard Model of particle physics to derive all equations in
quantum mechanics (and quantum field theory) that we need for our research.

We start by deriving the electroweak Standard Model from the SU(2) × U(1) symmetry and couple other (standard)
assumptions in the quantum field theory. After that, we only want to derive things and make nonrelativistic limits or
other approximations in order to derive everything else in quantum mechanics. In particular we show how to derive the
Dirac and Schrödinger equations (as a low energy limit). We then show some particular ways to solve those equations,
like perturbation theory, scattering theory, ...

The goal is to have a complete theory on about 30 or 40 pages and then lots of examples (arbitrarily long), that use the
theory (but do not develop new ideas), so that one can learn how the theory works from the examples. For instance,
one can ask “why is there the term (p − eA)2 in the Schrödinger equation for electromagnetic field, why this and
not something else?” or “why is there the σ · B term in the Pauli equation?”, to find the answer, one just finds the
Pauli equation in the theory and then looks at the derivation, so in this case one quickly finds that it follows from
the minimal coupling in QED, e.g. it’s the easiest way how electron-foton interaction can be coupled, e.g. the U(1)
symmetry. Nice thing about QFT is that one can find really nice geometrical reasons why things are that way and not
some other way (just open any advance book on QFT), but the problem is that basically nowhere is some easy (but
correct) translation of those results to regular QM, so that everything fits into just couple dozens pages, so that it can
serve as a reference.

The advantage of this top-down approach is that it is easy to see where things come from and also to understand exactly
what approximations one is using when dealing with any equation in QM. However, as is well-known in physics, to be
a good physicist one has to understand all the approaches, e.g. both top-down and bottom-up and all other approaches
to QM and QFT, because there are no two approaches that would be 100% equivalent, so one has to use the right
approach for the particular problem. So these notes do not aspire to be the right way to teach QM, but rather to serve
as a reference to get quickly oriented and to find the equations to start from.

6.2 Standard Model

6.2.1 Electroweak Standard Model

Lagrangian with a global SU(2)× U(1) symmetry:

L = iL̄(l)γµ∂
µL(l) + il̄Rγµ∂

µlR + 1
2∂µΦ∗∂µΦ−m2Φ∗Φ− 1

4
λ(Φ∗Φ)2 − heL̄(l)ΦeR − h.c.
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where l = e, µ, τ and a = 1, 2, lL,R = 1
2 (1∓ γ5)l and

L(l) =

(
ν(l)L

lL

)
Local SU(2)× U(1) symmetry: This consists of two things. First changing the partial derivatives to covariant ones:

∂µ → Dµ = ∂µ − i

2
gτkA

µ
k −

i

2
g′Y Bµ

and second adding the kinetic terms

−1

4
F aµνF

aµν − 1

4
BµνB

µν

of the vector gauge particles to the lagrangian.

F aµν = ∂µA
a
ν − ∂νAaµ + gεabcAbµA

c
ν

Bµν = ∂µBν − ∂νBµ

Φ = e
i
vπ

a(x)τa
(

0
1√
2
(v +H(x))

)
This breaks the gauge invariance. The ∂µπa are going to be added to Aaµ so we can set πa = 0 now.

Higgs Terms

LHiggs = 1
2∂µΦ∗∂µΦ−m2Φ∗Φ− 1

4
λ(Φ∗Φ)2

Plugging in the covariant derivatives and Φ in U-gauge (symmetry breaking):

LHiggs =
1

2
Φ+(
←−
∂ µ + igAaµ

τa

2
+ ig′Y Bµ)(

−→
∂ µ + igAaµ

τa

2
+ ig′Y Bµ)Φ− λ(Φ+Φ− v2

2
)2 =

= Φ+
U (
←−
∂ µ + igAaµ

τa

2
+ ig′Y Bµ)(

−→
∂ µ + igAaµ

τa

2
+ ig′Y Bµ)ΦU − λ(Φ+

UΦU −
v2

2
)2 =

=
1

2
∂µH∂

µH − λv2H2 − λvH3 − 1

4
λH4+

+
1

8
(v +H)2

(
2g2

A1
µ + iA2

µ√
2

A1µ − iA2µ

√
2

+ (g2 + 4Y 2g′2)
gA3

µ − 2Y g′Bµ√
g2 + 4Y 2g′2

gA3µ − 2Y g′Bµ√
g2 + 4Y 2g′2

)
=

=
1

2
∂µH∂

µH − λv2H2 − λvH3 − 1

4
λH4 +

1

8
(v +H)2

(
2g2W−µ W

+µ +
g2

cos2 θW
ZµZ

µ

)
=

=
1

2
∂µH∂

µH − λv2H2 +
1

4
g2v2W−µ W

+µ +
g2v2

8 cos2 θW
ZµZ

µ − λvH3 − 1

4
λH4+
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+
1

2
vg2W−µ W

+µH +
g2

4 cos θW
vZµZ

µH +
1

4
g2W−µ W

+µH2 +
g2

8 cos θW
ZµZ

µH2

Where we put

W±µ =
1√
2

(A1
µ ∓ iA2

µ)

Zµ =
g√

g2 + 4Y 2g′2
A3
µ −

2Y g′√
g2 + 4Y 2g′2

Bµ

we defined θW by the relation

cos θW =
g√

g2 + 4Y 2g′2

so that the expressions simplify a bit, e.g. we now get:

sin θW =
2Y g′√

g2 + 4Y 2g′2

Zµ = cos θWA
3
µ − sin θWBµ

g2 + 4Y 2g′2 =
g2

cos2 θW

Yukawa terms

LY ukawa = −heL̄ΦeR − h.c. = −heL̄ΦUeR − h.c. =

= − 1√
2
he(v +H)(ēLeR + ēReL) = − 1√

2
he(v +H)ēe =

= − 1√
2
hevēe−

1√
2
heēeH

The term L̄ΦeR is U(1) (hypercharge) invariant, so

−YL + Y + YR = 0

Leptonic Terms

L = iL̄γµ∂µL+ iēRγ
µ∂µeR →

→ iL̄γµ(∂µ − igAaµ
τa

2
− ig′YLBµ)L+ iēRγ

µ(∂µ − ig′YRBµ)eR =
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= iL̄γµ∂µL+ iēRγ
µ∂µeR + gL̄γµ

τa

2
LAaµ + g′YLL̄γ

µLBµ + g′YRēRγ
µeRBµ =

= iL̄γµ∂µL+ iēRγ
µ∂µeR +

g√
2

(ν̄Lγ
µeLW

+
µ + h.c.) +

1

2
gL̄γµτ3LA3

µ + g′YLL̄γ
µLBµ + g′YRēRγ

µeRBµ =

= iν̄Lγ
µ∂µνL + iēγµ∂µe+

g√
2

(ν̄Lγ
µeLW

+
µ + h.c.) +

1

2
gν̄Lγ

µνLA
3
µ −

1

2
gēLγ

µeLA
3
µ

+g′YLν̄Lγ
µνLBµ + g′YLēLγ

µeLBµ + g′YRēRγ
µeRBµ =

= iν̄Lγ
µ∂µνL + iēγµ∂µe+

g√
2

(ν̄Lγ
µeLW

+
µ + h.c.)

+
[
( 1

2g sin θW + YLg
′ cos θW )ν̄Lγ

µνL + (− 1
2g sin θW + YLg

′ cos θW )ēLγ
µeL + YRg

′ cos θW ēRγ
µeR

]
Aµ

+
[
( 1

2g cos θW − YLg′ sin θW )ν̄Lγ
µνL + (− 1

2g cos θW − YLg′ sin θW )ēLγ
µeL − 2YLg

′ sin θW ēRγ
µeR

]
Zµ

Where we substituted new fields Zµ and Aµ for the old ones A3
µ and Bµ using the relation:

Zµ = cos θWA
3
µ − sin θWBµ

Aµ = sin θWA
3
µ + cos θWBµ

The angle θW must be the same as in the Higgs sector, so that the field Zµ is the same. We now need to make the
following requirement in order to proceed further:

Y = −YL
This follows for example by requiring that neutrinos have zero charge, i.e. setting 1

2g sin θW + YLg
′ cos θW = 0 and

substituting for θW from the definition (see the Higgs terms), from which one gets Y = −YL. From−YL+Y +YR = 0
we now get

YR = 2YL

it now follows:
1
2g sin θW + YLg

′ cos θW = 0

− 1
2g sin θW + YLg

′ cos θW = −g sin θW

YRg
′ cos θW = −g sin θW

tan θW = −2YL
g′

g

and the Lagrangian can be further simplified:

L = iν̄Lγ
µ∂µνL + iēγµ∂µe+

g√
2

(ν̄Lγ
µeLW

+
µ + h.c.)

−g sin θW (ēLγ
µeL + ēRγ

µeR)Aµ

+
g

cos θW

[
1
2 ν̄Lγ

µνL + (− 1
2 + sin2 θW )ēLγ

µeL + sin2 θW ēRγ
µeR

]
Zµ =

= iν̄Lγ
µ∂µνL + iēγµ∂µe+

g

2
√

2
(ν̄γµ(1− γ5)eW+

µ + h.c.)− g sin θW ēγ
µeAµ

+
g

2 cos θW

[
ν̄γµ(1− γ5)ν + ēγµ(− 1

2 + 2 sin2 θW + 1
2γ5)e

]
Zµ

Where we used the relations ν̄LγµeL = 1
2 ν̄γ

µ(1− γ5)e and ν̄RγµeR = 1
2 ν̄γ

µ(1 + γ5)e .

108 Chapter 6. Quantum Field Theory and Quantum Mechanics



Theoretical Physics Reference, Release 0.1

Gauge terms

LGauge = −1

4
F aµνF

aµν − 1

4
BµνB

µν =

= −1

4
(∂µA

a
ν − ∂νAaµ + gεabcAbµA

c
ν)(∂µAaν − ∂νAaµ + gεajkAjµAkν)− 1

4
BµνB

µν =

= −1

4
∂µA

a
ν∂

µAaν − 1

4
BµνB

µν − 1

2
(∂µA

a
ν − ∂νAaµ)gεabcAbµAcν − 1

4
g2εabcεajkAbµA

c
νA

kµAlν =

= −1

2
W−µνW

+µν − 1

4
AµνA

µν − 1

4
ZµνZ

µν − g[(∂µA
1
ν − ∂νA1

µ)A2µA3ν + cycl. perm. (123)]

−1

4
g2[(AaµA

aµ)(AbνA
bν)− (AaµA

a
ν)(AbµAbν)] =

= −1

2
W−µνW

+µν − 1

4
AµνA

µν − 1

4
ZµνZ

µν − g[A1
µA

2
ν

←→
∂ µA3ν + cycl. perm. (123)]

−1

4
g2[(AaµA

aµ)(AbνA
bν)− (AaµA

a
ν)(AbµAbν)] =

= −1

2
W−µνW

+µν − 1

4
AµνA

µν − 1

4
ZµνZ

µν − ig(W 0
µW

−
ν

←→
∂ µW+ν + cycl. perm. (0-+))

−g2[ 1
2 (W+

µ W
−µ)2 − 1

2 (W+
µ W

+µ)(W−ν W
−ν) + (W 0

µW
0µ)(W+

ν W
−ν)− (W−µ W

+
ν )(W 0µW 0ν) =

= −1

2
W−µνW

+µν − 1

4
AµνA

µν − 1

4
ZµνZ

µν + LWWγ + LWWZ + LWWγγ + LWWWW + LWWZZ + LWWZγ

Where W 0
µ = A3

µ = cos θWZµ + sin θWAµ and:

LWWγ = −ig sin θW (AµW
−
ν

←→
∂ µW+ν + cycl. perm. (AW− W+))

LWWZ = −ig cos θW (ZµW
−
ν

←→
∂ µW+ν + cycl. perm. (Z W− W+))

LWWγγ = −g2 sin2 θW (W−µ W
+µAνA

ν −W−µ AµW+
ν A

ν)

LWWWW = 1
2g

2(W−µ W
−µW+

ν W
+ν −W−µ W+µW−ν W

+ν)

LWWZZ = −g2 cos2 θW (W−µ W
+µZνZ

ν −W−µ ZµW+
ν Z

ν)

LWWZγ = g2 sin θW cos θW (−2W−µ W
+µAνZ

ν +W−µ Z
µW+

ν A
ν +W−µ A

µW+
ν Z

ν)
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GWS Lagrangian

Plugging everything together we get the GWS Lagrangian:

L =
1

2
∂µH∂

µH − λv2H2 +
1

4
g2v2W−µ W

+µ +
g2v2

8 cos2 θW
ZµZ

µ − λvH3 − 1

4
λH4+

+
1

2
vg2W−µ W

+µH +
g2

4 cos θW
vZµZ

µH +
1

4
g2W−µ W

+µH2 +
g2

8 cos θW
ZµZ

µH2

− 1√
2
hevēe−

1√
2
heēeH

−1

2
W−µνW

+µν − 1

4
AµνA

µν − 1

4
ZµνZ

µν + LWWγ + LWWZ + LWWγγ + LWWWW + LWWZZ + LWWZγ

+iν̄Lγ
µ∂µνL + iēγµ∂µe+

g

2
√

2
(ν̄γµ(1− γ5)eW+

µ + h.c.)− g sin θW ēγ
µeAµ

+
g

2 cos θW

[
ν̄γµ(1− γ5)ν + ēγµ(− 1

2 + 2 sin2 θW + 1
2γ5)e

]
Zµ

+(e, νe, he ↔ µ, νµ, hµ) + (e, νe, he ↔ τ, ντ , hτ )

The free parameters are g, θW , v, λ, he, hµ, hτ .

Particle Masses

The particle masses are deduced from the terms

L = −1

2
m2
HH

2 +m2
WW

−
µ W

+µ +
1

2
m2
ZZµZ

µ −meēe+ · · ·

comparing to the above:

L = −λv2H2 +
1

4
g2v2W−µ W

+µ +
g2v2

8 cos2 θW
ZµZ

µ − 1√
2
hevēe+ · · ·

we get

mW = 1
2gv

mZ =
gv

2 cos θW
=

mW

cos θW

mH = v
√

2λ

me =
1√
2
hev

mµ =
1√
2
hµv

mτ =
1√
2
hτv

Note that those are the bare masses (e.g. in order to obtain the real mesaured masses of the particles, one has to
renormalize them by calculating the higher order corrections given by the loop diagrams).
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Parameters of the Standard Model

The free parameters are g, θW , v, λ, then three masses of the charged leptons he, hµ, hτ , six quark masses and four
parameters of the CKM mixing matrix, which gives 4 + 3 + 6 + 4 = 17 free parameters (if one allows for three neutrino
masses and the corresponding four mixings parameters, one gets 17 + 3 + 4 = 24 free parameters).

They can be traded for other physical parameters (see below), but their numerical values are not predicted by the
theory, so they have to be measured and their experimental values are approximately:

g = 0.631

θW = 28.67◦

v = 246.218 GeV

0.2 < λ < 4.0

he = 2.929 KeV

hτ = 0.6065 MeV

All the parameters have been measured quite exactly, except λ.

Other physical constants can then be calculated using the formulas:

mW = 1
2gv = 77.7 GeV

mZ =
mW

cos θW
= 88.6 GeV

mH = v
√

2λ = from 150 GeV to 700 GeV

me =
1√
2
hev = 510 KeV

mµ =
1√
2
hµv = 105.6 MeV

GF =
1√
2v2

= (1.16639± 0.00001)× 10−5 GeV−2

e = g sin θW = 0.3

α =
1

4π
g2 sin2 θW

.
=

1

137

Quarks

Lfermion+=
∑

q=d,s,b

iL̄
(q)
0 γµ∂µL

(q)
0 +

∑
q=d,u,s,c,b,t

iq̄0Rγ
µ∂µq0R

LY ukawa+= −
∑
q=d,s,b
q′=d,s,b

hqq′iL̄
(q)
0 Φq′0R + h.c.−

∑
q=d,s,b
q′=u,c,t

h̃qq′iL̄
(q)
0 Φ̃q′0R + h.c.

6.2.2 QFT

Field Operators

The free (non-interacting) fields in the interaction picture are expressed using the creation and anihilation operators
below, also the corresponding non-interacting Hamiltonian is shown.
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The general idea behind the machinery is that the field operator ψ̂(x) =
∑
k ψk(x)ck is constructed as a sum (or an

integral, depending on if the index k is discrete or continuous) of single-particle wave functions (i.e. solutions of the
noninteracting equation of motion) multiplied by the creation/anihilation operators (ck or c†k) that create/destroy the
particle in the given single-particle state. Note that the noninteracting equation of motion usually means that we set
all potentials (interactions) as zero, but in principle it can be any equation that we can solve exactly.

The coefficients ψk(x) don’t depend on time (so neither the field operators in the Schrödinger picture), but we work
in the interaction picture, where the creation/anihilation operators depend on time, and the time dependence is put into
the exponentials below (but the integration is still done over the spatial components of p only).

Scalar bosons:

φI(x) =

∫
d3p

(2π)3

1√
2Ep

(
ape
−ip·x + a†pe

ip·x)
πI(x) = ∂tφI(x) =

∫
d3p

(2π)3
(−i)

√
Ep

2

(
ape
−ip·x − a†peip·x

)
where: [

ap, a
†
q

]
= (2π)3δ(3)(p− q)

(all other commutators are equal to zero). The equal-time commutation relations for φ and π are then:

[φ(x), π(y)] = iδ(3)(x− y)

(all other commutators are equal to zero).

The Hamiltonian is

H =

∫
d3p

(2π)3
Epa

†
pap

Fermions:

ψI(x) =

∫
d3p

(2π)3

1√
2Ep

2∑
s=1

(
bspu

s(p)e−ip·x + ds†p v
s(p)eip·x

)
ψ̄I(x) = ψ†I(x)γ0 =

∫
d3p

(2π)3

1√
2Ep

2∑
s=1

(
dspv̄

s(p)e−ip·x + bs†p ū
s(p)eip·x

)
where

us(p) =

(√
p · σξs√
p · σ̄ξs

)
vs(p) =

( √
p · σηs

−
√

p · σ̄ηs
)

2∑
s=1

us(p)ūs(p) = /p+m

2∑
s=1

vs(p)v̄s(p) = /p−m{
brp, b

s†
q

}
=
{
drp, d

s†
q

}
= (2π)3δ(3)(p− q)δrs

(all other anticommutators are equal to zero). The equal-time anticommutation relations for ψ and ψ† are then:{
ψa(x), ψ†b(y)

}
= δ(3)(x− y)δab

{ψa(x), ψb(y)} =
{
ψ†a(x), ψ†b(y)

}
= 0
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The Hamiltonian is

H =

∫
d3p

(2π)3

2∑
s=1

Ep

(
bs†p b

s
p + ds†p d

s
p

)
and the total charge:

Q =

∫
d3p

(2π)3

2∑
s=1

(
bs†p b

s
p − ds†p dsp

)
So the b-type particles and d-type particles are identical except the charge. In QED, we identify the b-type particles as
electrons and the d-type particles as positrons.

Vector bosons:

Aµ(x) =

∫
d3p

(2π)3

1√
2Ep

3∑
r=0

(
arpε

r
µ(p)e−ip·x + ar†p ε

r∗
µ (p)eip·x

)
where [

arp, a
s†
q

]
= (2π)3δ(3)(p− q)δrs

The equal-time commutation relations for Aµ are then:[
Aµ(x), A†ν(y)

]
= δ(3)(x− y)δµν

Calculating Scattering Amplitudes using Green Functions

We are interested in calculating the following scattering amplitudes:

〈f |i〉

where the initial |i〉 and final |f〉 states are created by creation operators of the fields from the previous section. For
example

|i〉 = b†1b
†
2 |Ω〉

|f〉 = b†1′b
†
2′ |Ω〉

Depending on the particular creation and anihilation operators, it can be shown that they can be replaced by:

a†k in → i

∫
d4xeikx

(
∂2 +m2

)
φ(x) =

k2 −m2

i
φ̃(−k) =

1

D̃(k)
φ̃(−k)

ak out → i

∫
d4xe−ikx

(
∂2 +m2

)
φ(x) =

k2 −m2

i
φ̃(k) =

1

D̃(k)
φ̃(k)

bs†k in → i

∫
d4xψ̄(x)

(
i
←−
∂/ +m

)
us(k)eikx = ˜̄ψ(−k)

−k/−m
i

us(k) = ˜̄ψ(−k)
1

S̃(−k)
us(k)

bsk out → i

∫
d4xe−ikxūs(k) (−i∂/+m)ψ(x) = ūs(k)

k/−m
i

ψ(k) = ūs(k)
1

S̃(k)
ψ(k)

ds†k in → −i
∫

d4xeikxv̄s(k) (−i∂/+m)ψ(x) = −v̄s(k)
k/−m
i

ψ(−k) = −v̄s(k)
1

S̃(k)
ψ(−k)

dsk out → −i
∫

d4xψ̄(x)
(
i
←−
∂/ +m

)
vs(k)e−ikx = − ˜̄ψ(k)

−k/−m
i

vs(k) = − ˜̄ψ(k)
1

S̃(−k)
vs(k)

ar†k in → iεr∗µ (k)

∫
d4xeikx∂2Aµ(x) = εr∗µ (k)

k2

i
Ãµ(−k)

ark out → iεrµ(k)

∫
d4xe−ikx∂2Aµ(x) = εrµ(k)

k2

i
Ãµ(k)
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where the “in” is the operator for t → −∞ and “out” for t → ∞. The fields φ(x), ψ(x), ψ̄(x) and Aµ(x) have to be
time ordered. On the left hand side is a position space representation, the two expressions on the right hand side are
the momentum representation (the last expression is written using the propagators), e.g. a Fourier transform, which is
essentially just the following substitutions:

∂2 → −k2

i∂/→ k/

e±ikxφ(x)→ φ̃(∓k)

k2 −m2

i
→ 1

D̃(k)

±k/−m
i

→ 1

S̃(±k)

both representations are of course equivalent (but the momentum one is easier to use, since the formulas are shorter).

For our example we get in the position space:

〈f |i〉 = 〈Ω|bp2′ bp1′ b
†
p1
b†p2
|Ω〉 = 〈Ω|T bp2′ bp1′ b

†
p1
b†p2
|Ω〉 =

= i4
∫

d4x1d4x2d4x1′d
4x2′

e−ip1′x1′ [ūs1′ (k1′) (−i∂/1′ +m)]α1′

e−ip2′x2′ [ūs2′ (k2′) (−i∂/2′ +m)]α2′

〈Ω|T ψα2′ (x2′)ψα1′ (x1′)ψ̄α1(x1)ψ̄α2(x2)|Ω〉[(
i
←−
∂/1 +m

)
us1(p1)

]
α1

eip1x1[(
i
←−
∂/2 +m

)
us2(p2)

]
α2

eip2x2

where the α1, α2, α1′ and α2′ spinor indices were introduced to show how the matrices should be multiplied. The
vacuum amplitude is called a 4 point interacting Green function in position space:

G(4)
α1′α2′α1α2

(x1′ , x2′ , x1, x2) = 〈Ω|T ψα2′ (x2′)ψα1′ (x1′)ψ̄α1
(x1)ψ̄α2

(x2)|Ω〉

we can also take a Fourier transform to get the Green function in momentum space:

G̃(n)(p1, . . . , pn) =

∫ n∏
i=1

d4xie
−ipixi G(n)(x1, . . . , xn)

then the scattering amplitude becomes (resuming the previous calculation):

〈f |i〉 = · · · = i4

[ūs1′ (k1′) (−p/1′ +m)]α1′

[ūs2′ (k2′) (−p/2′ +m)]α2′

G̃(4)
α1′α2′α1α2

(p1′ , p2′ ,−p1,−p2)

[(p/1 +m)us1(p1)]α1

[(p/2 +m)us2(p2)]α2
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We can get the same result much faster if we use the momentum space from the beginning:

〈f |i〉 = 〈Ω|bp2′ bp1′ b
†
p1
b†p2
|Ω〉 = 〈Ω|T bp2′ bp1′ b

†
p1
b†p2
|Ω〉 =

= 〈Ω|T ūs2′ (p2′)
1

S̃(p2′)
ψ̃(p2′)ū

s1′ (p1′)
1

S̃(p1′)
ψ̃(p1′)

˜̄ψ(−p1)
1

S̃(−p1)
us1(p1) ˜̄ψ(−p2)

1

S̃(−p2)
us2(p2)|Ω〉 =

=

[
ūs2′ (p2′)

1

S̃(p2′)

]
α2′

[
ūs1′ (p1′)

1

S̃(p1′)

]
α1′

〈Ω|T ψ̃α2′ (p2′)ψ̃α1′ (p1′)
˜̄ψα1

(−p1) ˜̄ψα2
(−p2)|Ω〉[

1

S̃(−p1)
us1(p1)

]
α1

[
1

S̃(−p2)
us2(p2)

]
α1

This is called Lehmann-Symanzik-Zimmermann (LSZ) reduction formula. One obtains similar expressions for other
fields as well (if there were different creation operators between the initial and final states). All that remains is to
calculate the interacting Green functions (for which we need to know the interaction Lagrangian). But first couple
more examples:

Example 1

νe - e elastic scattering:

νe(k) + e(p)→ νe(k
′) + e(p′)

So the initial and final states are:

|i〉 = b†kb
†
p |Ω〉

|f〉 = b†k′b
†
p′ |Ω〉

and we get:

〈f |i〉 = 〈Ω|bp′bk′b†kb
†
p|Ω〉 = 〈Ω|T bp′bk′b†kb

†
p|Ω〉 =

=

[
ū(p′)

1

S̃(p′)

] [
ū(k′)

1

S̃(k′)

]
〈Ω|T ψ̃(p′)ψ̃(k′) ˜̄ψ(−k) ˜̄ψ(−p)|Ω〉[

1

S̃(−k)
u(k)

] [
1

S̃(−p)
u(p)

]

We only multiply the matrices with the same momentum, i.e.
[
ūs(p′) 1

S̃(p′)

]
with ψ̃(p′),

[
ūs(k′) 1

S̃(k′)

]
with ψ̃(k′)

and so on. Also we don’t write the spin anymore, e.g. u(k) should in fact be usk(k) and so on.

Example 2

Muon decay:

µ(P )→ e(p) + ν̄e(k
′) + νµ(k)

So the initial and final states are:

|i〉 = b†P |Ω〉

|f〉 = b†pd
†
k′b
†
k |Ω〉
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and we get:

〈f |i〉 = 〈Ω|bkdk′bpb†P|Ω〉

=

[
ū(k)

1

S̃(k)

] [
ū(p)

1

S̃(p)

]
〈Ω|T ψ̃(k)ψ̃(p) ˜̄ψ(k′) ˜̄ψ(−P)|Ω〉[
− 1

S̃(−k′)
v(k′)

] [
1

S̃(−P)
u(P)

]

Example 3

e+ + e− scattering:

e−(p1) + e+(p2)→ e−(k1) + e+(k2)

Initial and final states:

|i〉 = bt†p1
du†p2
|Ω〉

|f〉 = br†k1
ds†k2
|Ω〉

And we get:

〈f |i〉 = 〈Ω|brk1
dsk2

bt†p1
du†p2
|Ω〉 =

= 〈Ω|Tbrk1
dsk2

bt†p1
du†p2
|Ω〉 =

= 〈Ω|T
[
ūr(k1)

1

S̃(k1)
ψ̃(k1)

] [
− ˜̄ψ(k2)

1

S̃(−k2)
vs(k2)

] [
˜̄ψ(−p1)

1

S̃(−p1)
ut(p1)

] [
−v̄u(p2)

1

S̃(p2)
ψ̃(−p2)

]
|Ω〉 =

=

[
ūr(k1)

1

S̃(k1)

] [
v̄u(p2)

1

S̃(p2)

]
〈Ω|T ψ̃(k1) ˜̄ψ(k2) ˜̄ψ(−p1)ψ̃(−p2)|Ω〉[

1

S̃(−k2)
vs(k2)

] [
1

S̃(−p1)
ut(p1)

]

Example 4

H(p)→ Z(k) + Z(l) decay. Initial and final states:

|i〉 = a†p |Ω〉

|f〉 = ar†k a
s†
l |Ω〉

and we get:

〈f |i〉 = 〈Ω|arkasl a†p|Ω〉 = 〈Ω|Tarkasl a†p|Ω〉 =

= 〈Ω|Tεr∗µ (k)
k2

i
Ãµ(k)εs∗ν (l)

l2

i
Ãν(l)

1

D̃(p)
φ̃(−p)|Ω〉 =

=
εr∗µ (k)εs∗ν (l)
i
k2

i
l2 D̃(p)

〈Ω|TÃµ(k)Ãν(l)φ̃(−p)|Ω〉
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Example 5

e+e− →W+W− scattering:

e−(k) + e+(−l)→W−(p) +W+(r)

So the initial and final states are:

|i〉 = b†kd
†
−l |Ω〉

|f〉 = aλ†p a
µ†
r |Ω〉

and we get:

〈f |i〉 = 〈Ω|aµr aλpb
†
kd
†
−l|Ω〉

= εµα(r)
r2

i
ελβ(p)

p2

i

[
−v̄(−l)

1

S̃(−l)

]
〈Ω|T Ãα(r)Ãβ(p) ˜̄ψ(−k)ψ̃(l)|Ω〉[

1

S̃(−k)
u(k)

]

Example 6

W+W− →W+W− scattering:

W−(k) +W+(p)→W−(r) +W+(l)

So the initial and final states are:

|i〉 = aµ†k aν†p |Ω〉

|f〉 = aα†r aβ†l |Ω〉

and we get:

〈f |i〉 = 〈Ω|aβl a
α
r a

µ†
k aν†p |Ω〉

= εµ∗ρ (k)
k2

i
εν∗σ (p)

p2

i
〈Ω|T Ãκ(r)Ãλ(l)Ãσ(−p)Ãρ(−k)|Ω〉 εακ(r)

r2

i
εβλ(l)

l2

i

Evaluation of the Interacting Green Functions

The interacting Green functions can be evaluated using the formula:

G(n)(x1, . . . , xn) = 〈Ω|T φH(x1) . . . φH(xn)|Ω〉 =

=
〈0|T φI(x1) . . . φI(xn)S|0〉

〈0|S|0〉

where

S = UI(∞,−∞) = T exp

(
− i
h̄

∫ ∞
−∞

H1(t)dt

)
= T exp

(
− i
h̄

∫
d4xH1(x)

)
φH is a field in the Heisenberg picture (φ(x, t) = eiHtφ(x, 0)e−iHt) and φI is a field in the interaction picture
(φ(x, t) = eiH0tφ(x, 0)e−iH0t), where the Hamiltonian isH = H0 +H1 and the vacua (ground states) areH0 |0〉 = 0
and H |Ω〉 = 0.
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This can be proven by evaluating the right hand side:

〈0|T φI(x1) . . . φI(xn)S|0〉
〈0|S|0〉

=
〈0|T φI(x1) . . . φI(xn)UI(∞,−∞)|0〉

〈0|UI(∞, 0)UI(0,−∞)|0〉

=
〈0|UI(∞, t1)φI(x1)UI(t1, t2) . . . UI(tn−1, tn)φI(xn)UI(tn,−∞)|0〉

〈0|UI(∞, 0)UI(0,−∞)|0〉

=
〈0|UI(∞, 0)φH(x1) . . . φH(xn)UI(0,−∞)|0〉

〈0|UI(∞, 0)UI(0,−∞)|0〉
=

=
〈0|Ω〉 〈Ω|TφH(x1) . . . φH(xn)|Ω〉 〈Ω|0〉

〈0|Ω〉 〈Ω|Ω〉 〈Ω|0〉
=

=
〈Ω|TφH(x1) . . . φH(xn)|Ω〉

〈Ω|Ω〉
=

= 〈Ω|TφH(x1) . . . φH(xn)|Ω〉

where we used the following relations:

UI(tk−1, tk)φI(xk)UI(tk, tk+1) = UI(tk−1, 0)U†I (tk, 0)φI(xk)UI(tk, 0)UI(0, tk+1) = UI(tk−1, 0)φH(xk)UI(0, tk+1)

UI(0,−∞) |0〉 = UI(0,−∞)

|Ω〉 〈Ω|+∑
n 6=0

|n〉 〈n|

 |0〉 = |Ω〉 〈Ω|0〉+ lim
t→−∞

∑
n 6=0

eiEnt |n〉 〈n|0〉 = |Ω〉 〈Ω|0〉

〈Ω|Ω〉 = 1

Evolution Operator, S-Matrix Elements

The evolution operator U is defined by the equations:

|φ(t2)〉 = U(t2, t1) |φ(t1)〉

ih̄
∂U(t, t1)

∂t
= H(t)U(t, t1)

U(t1, t1) = 1

We are interested in calculating the S matrix elements:

〈f |U(∞,−∞)|i〉 = 〈f |S|i〉 = Sfi

so we first calculate U(∞,−∞). Integrating the equation for the evolution operator:

U(t2, t1) = U(t1, t1)− i

h̄

∫ t2

t1

H(t)U(t, t1)dt = 1− i

h̄

∫ t2

t1

H(t)U(t, t1)dt

Now:

S = U(∞,−∞) = 1− i

h̄

∫ ∞
−∞

H(t′)U(t′,−∞)dt′ =

= 1 +

(
− i
h̄

)∫ ∞
−∞

H(t′)U(t′,−∞)dt′ +

(
− i
h̄

)2 ∫ ∞
−∞

∫ t′

−∞
H(t′)H(t′′)U(t′′,−∞)dt′dt′′ =
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= · · · =
∞∑
n=0

(
− i
h̄

)n
1

n!

∫ ∞
−∞

∫ ∞
−∞
· · ·T{H(t1)H(t2) · · · }dt1dt2 · · · =

= T exp

(
− i
h̄

∫ ∞
−∞

H(t)dt

)
= T exp

(
− i
h̄

∫ ∞
−∞

d4xH(x)

)
If L doesn’t contain derivatives of the fields, thenH = −L so:

U(∞,−∞) = T exp

(
i

h̄

∫ ∞
−∞

d4xL(x)

)
Let’s write S = 1 + iT and |i〉 = |k1 · · · km〉, |f〉 = |p1 · · · pn〉. As a first step now, let’s investigate a scalar field, e.g.
L = −λ4φ

4 (e.g. a Higgs self interaction term above), we’ll look at other fields later:

〈f |S|i〉 = 〈f |iT |i〉 = 〈p1 · · · pn|iT |k1 · · · km〉 =
1

D̃(k1) · · · D̃(km)

1

D̃(p1) · · · D̃(pn)

∫
d4x1 · · · d4xme

−i(k1x1+···+kmxm)

∫
d4y1 · · · d4yne

+i(p1y1+···+pnyn)G(x1, · · · , xm, y1, · · · , ym)

where

G(x1, · · · , xn) = 〈Ω|T{φ(x1) · · ·φ(xn)}|Ω〉 =

〈0|T{φI(x1) · · ·φI(xn) exp
(
i
h̄

∫∞
−∞ d4xL(x)

)
}|0〉

〈0|T exp
(
i
h̄

∫∞
−∞ d4xL(x)

)
|0〉

This is called the LSZ formula. Now we use the Wick contraction, get some terms like D23D34 integrate things out,
this will give the delta function and D̃(p)‘s and that’s it.

Let’s see how it goes for L = −λ4φ
4 for the process k1 + k2 → p1 + p2:

〈p1p2|S|k1k2〉 =

∫
d4x1d4x2e

−i(k1x1+k2x2)
∫

d4y1d4y2e
i(p1y1+p2y2)

D̃(k1)D̃(k2)D̃(p1)D̃(p2)

〈0|T{φI(x1)φI(x2)φI(y1)φI(y2) exp
(
− iλ

4h̄

∫
d4xφ4

I(x)
)
}|0〉

〈0|T exp
(
− iλ

4h̄

∫
d4xφ4

I(x)
)
|0〉

=

=

∫
d4x1d4x2e

−i(k1x1+k2x2)
∫

d4y1d4y2e
i(p1y1+p2y2)

D̃(k1)D̃(k2)D̃(p1)D̃(p2)

[
〈0|T{φI(x1)φI(x2)φI(y1)φI(y2)}|0〉
〈0|T exp

(
− iλ

4h̄

∫
d4xφ4

I(x)
)
|0〉

+

+

(
− iλ

4h̄

) ∫
d4x 〈0|T{φI(x1)φI(x2)φI(y1)φI(y2)φ4

I(x)}|0〉
〈0|T exp

(
− iλ

4h̄

∫
d4xφ4

I(x)
)
|0〉

+

+

(
− iλ

4h̄

)2 ∫
d4x d4y 〈0|T{φI(x1)φI(x2)φI(y1)φI(y2)φ4

I(x)φ4
I(y)}|0〉

〈0|T exp
(
− iλ

4h̄

∫
d4xφ4

I(x)
)
|0〉

+ · · ·

]
=

6.2. Standard Model 119



Theoretical Physics Reference, Release 0.1

=
1

D̃(k1)D̃(k2)D̃(p1)D̃(p2)

[
(2π)4δ(4)(p1 + p2)(2π)4δ(4)(k1 + k2)D̃(p1)D̃(k1)+

(−iλ)6(2π)4δ(4)(p1 + p2 − k1 − k2)D̃(k1)D̃(k2)D̃(p1)D̃(p2)+

(−iλ)(disconnected terms with not enough D̃(· · · )s) + (−iλ)2(· · · ) + · · ·
]

=

= (2π)4δ(4)(p1 + p2 − k1 − k2)

[
6(−iλ) + 3(−iλ)2

∫
d4k

(2π)4
D̃(k)D̃(p1 + p2− k) + (−iλ)3(· · · ) + · · ·

]
The denominator cancels with the disconnected terms. We used the Wick contractions (see below for a thorough
explanation+derivation):

〈0|T{φI(x1)φI(x2)φI(y1)φI(y2)}|0〉 = D(x1 − x2)D(y1 − y2) +D(x2 − y1)D(x1 − y2) +D(x2 − y2)D(x1 − y1)

〈0|T{φI(x1)φI(x2)φI(y1)φI(y2)φ4
I(x)}|0〉 = D(x1 − x)D(x2 − x)D(y1 − x)D(y2 − x) + disconnected

〈0|T{φI(x1)φI(x2)φI(y1)φI(y2)φ4
I(x)φ4

I(y)}|0〉 = D(x1 − x)D(x2 − x)D(y1 − y)D(y2 − y)D(x− y)D(x− y)

+disconnected

Where the “disconnected” terms are D(x1− y1)D(x2− y2)D(x−x)D(x−x) and similar. When they are integrated
over, they do not generate enough D̃(p1) propagators to cancel the propagators from the LSZ formula, which will
cause the terms to vanish.

For the L = φ3(x) theory, one also needs the following contractions:

〈0|T{φI(x1)φI(x2)φI(y1)φI(y2)φ3
I(x)}|0〉 = 0

〈0|T{φI(x1)φI(x2)φI(y1)φI(y2)φ3
I(x)φ3

I(y)}|0〉 = D(x1 − x)D(x2 − x)D(x− y)D(y1 − y)D(y2 − y)

Thus it is clear that the only difference from the above is the factor D(x − y) which after integrating changes to
D̃(p1 + p2) and this ends up in the final result.

One always gets the delta function in the result, so we define the matrix elementMfi by:

Sfi = (2π)4δ(4)(p1 + p2 + · · · − k1 − k2 − · · · )iMfi

Propagators for Scalar Bosons, Fermions and Vector Bosons

The only nonzero contractions that can occur are the propagators below. All other contractions are zero.

Propagator for a scalar boson is:

〈0|T{φI(x)φI(y)}|0〉 ≡ D(x− y) =

∫
d4p

(2π)4
D̃(p)e−ip(x−y)
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with

D̃(p) =
i

p2 −m2 + iε

For fermions (Feynman propagator):

〈0|T{ψI(x)ψ̄I(y)}|0〉 ≡ S(x− y) =

∫
d4p

(2π)4
S̃(p)e−ip(x−y)

with

S̃(p) =
i

p/−m+ iε
=

i(p/+m)

p2 −m2 + iε

For vector bosons:

〈0|T{Aµ(x)Aν(y)}|0〉 ≡ Dµν(x− y) =

∫
d4p

(2π)4
D̃µν(p)e−ip(x−y)

with

D̃µν(p) = i
−gµν +

pµpν
m2

p2 −m2 + iε

For massless bosons:

D̃µν(p) = i
−gµν
p2 + iε

Wick Theorem

As seen above, we need to be able to calculate

〈0|T{φI(x1) · · ·φI(xn)}|0〉

The Wick theorem says, that this is equal to all possible contractions of fields (all fields need to be contracted), where
a contraction is defined as:

〈0|T{φI(x)φI(y)}|0〉 ≡ D(x− y) =

∫
d4p

(2π)4
D̃(p)e−ip(x−y)

with

D̃(p) =
i

p2 −m2 + iε

A few lowest possibilities:

〈0|T{φI(x1)}|0〉 = 0

〈0|T{φI(x1)φI(x2)}|0〉 = D12

〈0|T{φI(x1)φI(x2)φI(x3)}|0〉 = 0

〈0|T{φI(x1)φI(x2)φI(x3)φI(x4)}|0〉 = disconnected
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〈0|T{φI(x1)φI(x2)φI(x3)φI(x4)φI(x)}|0〉 = 0

〈0|T{φI(x1)φI(x2)φI(x3)φI(x4)φ2
I(x)}|0〉 = disconnected

〈0|T{φI(x1)φI(x2)φI(x3)φI(x4)φ3
I(x)}|0〉 = 0

〈0|T{φI(x1)φI(x2)φI(x3)φI(x4)φ4
I(x)}|0〉 = 4!D(x1 − x)D(x2 − x)D(x3 − x)D(x4 − x) + disconnected

〈0|T{φI(x1)φI(x2)φI(x3)φI(x4)φ3
I(x)φ3

I(y)}|0〉 =

= D(x1 − x)D(x2 − x)D(x− y)D(x3 − y)D(x4 − y) + disconnected

〈0|T{φI(x1)φI(x2)φI(x3)φI(x4)φ4
I(x)φ4

I(y)}|0〉 =

= D(x1 − x)D(x2 − x)D(x− y)D(x− y)D(x3 − y)D(x4 − y) + disconnected

For the last two equations, not all possibilities of the connected graphs are listed (and also the combinatorial factor is
omitted).

Nonrelativistic Field Operators

One difference in nonrelativistic quantum mechanics is that the noninteracting solutions to the equation of motion
(Schrödinger equation in this case) can be numbered using a discrete index, so for example the momentum q is not
continuous, thus the (anti)commutation relations for creation and anihilation operators contain the Kronecker delta
(instead of a delta function) and integrals over the index are replaced by sums. The reason for that is that we usually
employ boundary conditions (like a lattice, or one particle potential due to nuclei, etc.) that make the spectrum discrete.

For bosons the field operators are given by:

ψ̂(x) =
∑
k

ψk(x)ck

ψ̂†(x) =
∑
k

ψ∗k(x)c†k

where the coefficients are the single-particle wave functions.

[ck, c
†
l ] = δkl

[ck, cl] = [c†k, c
†
l ] = 0

so the commutation relations for ψ̂ and ψ̂† are:

[ψ̂(x), ψ̂†(y)] = δ(3)(x− y)

[ψ̂(x), ψ̂(y)] = [ψ̂†(x), ψ̂†(y)] = 0

For fermions:

ψ̂(x) =
∑
k

2∑
s=1

ψsk(x)ck

ψ̂†(x) =
∑
k

2∑
s=1

ψs∗k (x)c†k
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where

{ck, c†l } = δkl

{ck, cl} = {c†k, c
†
l } = 0

so the commutation relations for ψ̂ and ψ̂† are:

{ψ̂(x), ψ̂†(y)} = δ(3)(x− y)

{ψ̂(x), ψ̂(y)} = {ψ̂†(x), ψ̂†(y)} = 0

The (interacting) Hamiltonian for both bosons and fermions is

ih̄∂t |Ψ(t)〉 = Ĥ |Ψ(t)〉

Ĥ = T̂ + V̂ =
∑
ij

c†i 〈i|T |j〉 cj + 1
2

∑
ijkl

c†i c
†
j 〈ij|V |kl〉 clck

Note the ordering of the final two destruction operators clck, which is opposite that of the last two single-particle wave
functions in the matrix elements of the potential 〈ij|V |kl〉 (for bosons it doesn’t matter, for fermions it changes a
sign).

Nonrelativistic Propagator

Nonrelativistic limits of the propagators are obtained by assuming |p|/m� 1 (we substitute ω = p0 −m):

D̃(p) =
i

p2 −m2 + iε
=

i

p2
0 − p2 −m2 + iε

=
i(

p0 −
√

p2 +m2
)(

p0 +
√

p2 +m2
)

+ iε
≈

≈ i(
p0 −m− p2

2m

)(
p0 +m+ p2

2m

)
+ iε

=
i(

ω − p2

2m

)(
ω + 2m+ p2

2m

)
+ iε

the behavior of the propagator in the vicinity of its positive frequency pole ω ≈ p2

2m is (remember ω → 0 in the
nonrelativistic limit):

D̃(p) ≈ i(
ω − p2

2m

)(
ω + 2m+ p2

2m

)
+ iε

≈ i(
ω − p2

2m

)
2m+ iε

=
1

2m

i

ω − p2

2m + iε′

Similarly for fermions:

S̃(p) =
i(p/+m)

p2 −m2 + iε
=
i(p0γ0 − pjγj +m)

p2 −m2 + iε
≈ 1

2m

i(p0γ0 − pjγj +m)

ω − p2

2m + iε′
=

=
1

2m

i((ω +m)γ0 − pjγj +m)

ω − p2

2m + iε′
≈ 1

2m

i(mγ0 − pjγj +m)

ω − p2

2m + iε′
=

=
i
(

1
2 (γ0 + 1)− pjγj

2m

)
ω − p2

2m + iε′
(6.1)

The first term

1
2 (γ0 + 1) =


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0


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selects the two upper components of a given bispinor. The second term

−p
jγj
2m

=

(
0 −p

jσj
2m

pjσj
2m 0

)

mixes the upper and lower components of the bispinor and the contribution of this term is quadratic in p
m so it can be

neglected. The numerator of (6.1) reduces to a unit matrix (in spin space):

S̃(p) ≈
i
(

1
2 (γ0 + 1)− pjγj

2m

)
ω − p2

2m + iε
≈ i1

ω − p2

2m + iε
= 1G+

0 (p, ω)

where G+
0 (p, ω) is the nonrelativistic retarded propagator defined by:

G+
0 (x− y) = i

∫
d3p

(2π)3

∫
dω

2π
G+

0 (p, ω)eip·(x−y)e−iω(tx−ty)

(For the other pole p0 = −
√

p2 +m2, we define ω = −p0 −m and we would see that the antiparticles’ propagator
reduces to the advanced Green’s function in the nonrelativistic limit.)

As shown above, the nonrelativistic free propagator is defined by:

G+
0 (x− y) = i

∫
d3p

(2π)3

∫
dω

2π
G+

0 (p, ω)eip·(x−y)e−iω(tx−ty)

with:

G+
0 (p, ω) =

i

ω − p2

2m + iε

If we use the energies of the nonineracting particles Ek ≡ εk = h̄2k2

2m = k2

2m , we can write it as:

G+
0 (p, ω) =

i

ω − p2

2m + iε
=

i

ω − Ek + iε

so

G+
0 (k, ω) =

i

ω − Ek + iε

using E = h̄ω we can also write:

G+
0 (k,E) =

i

E − Ek + iε

Other equivalent ways of representing the propagator:

G+
0 (x− y) = G+

0 (x, tx,y, ty) = i

∫
d3pdE

(2πh̄)4
G+

0 (p, E)e
i
h̄p·(x−y)e−

i
h̄E(tx−ty) =

= i

∫
d3kdω

(2π)4
G+

0 (k, ω)eik·(x−y)e−iω(tx−ty)

Sometimes it’s useful to calculate the mixed representation G+
0 (k, t):

G+
0 (k, t) =

∫
dω

2π
e−iωtG+

0 (k, ω) =

∫
dω

2π
e−iωt

i

ω − Ek + iε
= · · · = θte

−i(Ek−iε)t

(The “· · · ” means to use the Residue Theorem and distinguish two cases t < 0 and t > 0, thus getting the Heaviside
step function θt in the result.)
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Very often, in practice, one just needs to work with G+
0 (k, t) and G+

0 (k, ω), here is how to convert between those:

G+
0 (k, t) =

∫ ∞
−∞

dω

2π
e−iωtG+

0 (k, ω)

G+
0 (k, ω) =

∫ ∞
−∞

dt eiωtG+
0 (k, t)

The relation to the contraction of operators is:

G+
0 (k, t2 − t1) = −iθt2−t1 〈Ψ0|ck(t2)c†k(t1)|Ψ0〉

where |Ψ0〉 is the ground state wavefunction and:

ck(t) = eiH0tcke
−iH0t

so to understand the meaning of G+
0 (k, t2 − t1), we write it as:

G+
0 (k, t2 − t1) = −iθt2−t1 〈Ψ0|ck(t2)c†k(t1)|Ψ0〉 = −iθt2−t1 〈Ψ0|eiH0t2cke

−iH0(t2−t1)c†ke
−iH0t1 |Ψ0〉 =

= −iθt2−t1
(
e−iH0t2 |Ψ0〉

)† (
cke
−iH0(t2−t1)c†ke

−iH0t1 |Ψ0〉
)

which describes the probability amplitude of adding a bare particle at time t1, removing at time t2 and regaining the
original many-body system (that in the meantime evolved into e−iH0t2 |Ψ0〉).

Evaluating the Interacting Green Functions

The Green functions below can either be evaluated using the Wick theorem, or using Feynman diagrams and the
corresponding Feynman rules.

Example 1

LZZH = λZµZ
µH , in the first order:

〈Ω|TÃµ(k)Ãν(l)φ̃(−p)|Ω〉 = iλ(2π)4δ(k + l − p)D̃µ
α(k)D̃να(l)D̃(p)

Example 2

Leeγ = −λēγµeAµ, in the second order:

〈Ω|T ψ̃(k1) ˜̄ψ(k2) ˜̄ψ(−p1)ψ̃(−p2)|Ω〉 =

= (−iλ)2(2π)4δ(k1 + k2 − p1 − p2)
[
S̃(k1)γµS̃(−k2)Dµν(k1 + k2)S̃(p2)γν S̃(−p1)+

+S̃(k1)γµS̃(−p1)Dµν(k1 − p1)S̃(p2)γν S̃(−k2)
]
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Example 3

Lint = g

2
√

2
ν̄eγ

µ(1− γ5)eW+
µ + h.c., in the second order:

〈Ω|TÃα(r)Ãβ(p) ˜̄ψ(−k)ψ̃(−l)|Ω〉 =

=

∫
d4x d4y 〈0|TÃα(r)Ãβ(p) ˜̄ψ(−k)ψ̃(−l)

i
g

2
√

2
ν̄e(x)γµ(1− γ5)e(x)W+

µ (x)

i
g

2
√

2
ν̄e(y)γν(1− γ5)e(y)W+

ν (y)

|0〉 =

=

(
i
g

2
√

2

)2 ∫
d4xd4y dr̂ dp̂ dk̂ dl̂ ei(r̂r+p̂p−k̂k−l̂l)

〈0|TAα(r̂)Aβ(p̂)ψ̄(k̂)ψ(l̂)

ν̄e(x)γµ(1− γ5)e(x)W+
µ (x)

ν̄e(y)γν(1− γ5)e(y)W+
ν (y)

|0〉 =

=

(
i
g

2
√

2

)2 ∫
d4xd4y dr̂ dp̂ dk̂ dl̂ ei(r̂r+p̂p−k̂k−l̂l)

Dα
µ(r̂ − x)Dµ

ν(p̂− y)S(l̂ − x)γµ(1− γ5)S(x− y)γν(1− γ5)S(k̂ − y) =

=

(
i
g

2
√

2

)2 ∫
d4x d4y dr̂ dp̂ dk̂ dl̂ ei((r̂+x)r+(p̂+y)p−(k̂+y)k−(l̂+x)l)

Dα
µ(r̂)Dµ

ν(p̂)S(l̂)γµ(1− γ5)S(x− y)γν(1− γ5)S(k̂) =

=

(
i
g

2
√

2

)2 ∫
d4xd4y ei(xr+yp−yk−xl)

D̃α
µ(r)D̃µ

ν(p)S̃(l)γµ(1− γ5)S(x− y)γν(1− γ5)S̃(k) =

=

(
i
g

2
√

2

)2 ∫
d4x d4y ei((x+y)r+yp−yk−(x+y)l)

D̃α
µ(r)D̃µ

ν(p)S̃(l)γµ(1− γ5)S(x)γν(1− γ5)S̃(k) =

=

(
i
g

2
√

2

)2 ∫
d4y ei(yr+yp−yk−yl)

D̃α
µ(r)D̃µ

ν(p)S̃(l)γµ(1− γ5)S̃(r − l)γν(1− γ5)S̃(k) =

=

(
i
g

2
√

2

)2

(2π)4δ(r + p− k − l)D̃α
µ(r)D̃β

ν(p)S̃(l)γµ(1− γ5)S̃(r − l)γν(1− γ5)S̃(k)
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ZZH interaction

Let’s calculate the LZZH = λZµZ
µH interaction in the SM, where λ = g2

4 cos θW
. Consider H(p)→ Z(k) + Z(l):

〈f |S|i〉 = 〈f |iT |i〉 = 〈kl|iT |p〉 = 〈Ω|arkasl a†p|Ω〉 = 〈Ω|Tarkasl a†p|Ω〉 =

= 〈Ω|Tεr∗µ (k)
k2

i
Ãµ(k)εs∗ν (l)

l2

i
Ãν(l)

1

D̃(p)
φ̃(−p)|Ω〉 =

=
εr∗µ (k)εs∗ν (l)
i
k2

i
l2 D̃(p)

〈Ω|TÃµ(k)Ãν(l)φ̃(−p)|Ω〉

=
εr∗µ (k)εs∗ν (l)
i
k2

i
l2 D̃(p)

iλ(2π)4δ(k + l − p)D̃µ
α(k)D̃να(l)D̃(p)

=
εr∗µ (k)εs∗ν (l)
i
k2

i
l2 D̃(p)

iλ(2π)4δ(k + l − p)−ig
µ
α

k2

−igνα

l2
D̃(p)

= εr∗µ (k)εs∗ν (l)iλ(2π)4δ(k + l − p)gµαgνα

= εr∗µ (k)εs∗ν (l)iλ(2π)4δ(k + l − p)gµν

= iλ(2π)4δ(k + l − p)εr∗µ (k)εsµ∗(l)

where we used the fact, that the first order contribution of the λZµZµH interaction to the interacting Green function
is:

〈Ω|TÃµ(k)Ãν(l)φ̃(−p)|Ω〉 = iλ(2π)4δ(k + l − p)D̃µ
α(k)D̃να(l)D̃(p)

eeH interaction

This is only approximate, it will be fixed soon.

Let’s calculate the LeeH = −λēeH interaction in the SM, where λ = he√
2

. Consider H(p)→ e−(k) + e+(l):

〈f |S|i〉 = 〈f |iT |i〉 = 〈kl|iT |p〉 =
ū(k)v(l)

S̃(k)S̃(l)

1

D̃(p)

∫
d4x1e

−ipx1

∫
d4y1d4y2e

+i(ky1+ly2) 〈0|T{ē(y1)e(y2)H(x1)}|0〉 =

=
ū(k)v(l)

S̃(k)S̃(l)

1

D̃(p)

∫
d4x1e

−ipx1

∫
d4y1d4y2e

+i(ky1+ly2)

∫
d4x(−iλ)S(y1 − x)S(y2 − x)D(x1 − x) =

= (−iλ)(2π)4δ(4)(p− k − l)ū(k)v(l)

where we used the fact, that the only nonzero element of the Green function is∫
d4x 〈0|T{ē(y1)e(y2)H(x1)ē(x)e(x)H(x)}|0〉
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ee gamma interaction

This is only approximate, it will be fixed soon.

Let’s calculate the Leeγ = −λēγµeAµ interaction in the SM, where λ = g sin θW . Consider γ(p)→ e−(k) + e+(l):

〈f |S|i〉 = 〈f |iT |i〉 = 〈kl|iT |p〉 =
ū(k)v(l)

S̃(k)S̃(l)

εµ(p)

D̃αβ(p)∫
d4x1e

−ipx1

∫
d4y1d4y2e

+i(ky1+ly2) 〈0|T{ē(y1)e(y2)Aµ(x1)}|0〉 =

=
ū(k)v(l)

S̃(k)S̃(l)

εµ(p)

D̃αβ(p)∫
d4x1e

−ipx1

∫
d4y1d4y2e

+i(ky1+ly2)

∫
d4x(−iλ)S(y2 − x)γµS(y1 − x)Dα

µ(x1 − x) =

= (2π)4δ(4)(p− k − l)ū(k)(−iλ)γµv(l)εµ(p)

where we used the fact, that the only nonzero element of the Green function is∫
d4x 〈0|T{ē(y1)e(y2)Aα(x1)ē(x)γµe(x)Aµ(x)}|0〉 =

= ±S(y2 − x)γµS(y1 − x)Dα
µ(x1 − x)

eeee interaction

Let’s calculate the Leeγ = −λēγµeAµ interaction in the SM, where λ = g sin θW . Consider e−(p1) + e+(p2) →
γ(q)→ e−(k1) + e+(k2):

〈f |S|i〉 = 〈f |iT |i〉 = 〈k1k2|iT |p1p2〉 = 〈Ω|brk1
dsk2

bt†p1
du†p2
|Ω〉 =

= 〈Ω|Tbrk1
dsk2

bt†p1
du†p2
|Ω〉 =

= 〈Ω|T
[
ūr(k1)

1

S̃(k1)
ψ̃(k1)

] [
− ˜̄ψ(k2)

1

S̃(−k2)
vs(k2)

] [
˜̄ψ(−p1)

1

S̃(−p1)
ut(p1)

] [
−v̄u(p2)

1

S̃(p2)
ψ̃(−p2)

]
|Ω〉 =

=

[
ūr(k1)

1

S̃(k1)

] [
v̄u(p2)

1

S̃(p2)

]
〈Ω|T ψ̃(k1) ˜̄ψ(k2) ˜̄ψ(−p1)ψ̃(−p2)|Ω〉[

1

S̃(−k2)
vs(k2)

] [
1

S̃(−p1)
ut(p1)

]
=

=

[
ūr(k1)

1

S̃(k1)

] [
v̄u(p2)

1

S̃(p2)

]
(−iλ)2(2π)4δ(k1 + k2 − p1 − p2)

[
S̃(k1)γµS̃(−k2)Dµν(k1 + k2)S̃(p2)γν S̃(−p1)+

+S̃(k1)γµS̃(−p1)Dµν(k1 − p1)S̃(p2)γν S̃(−k2)
]

[
1

S̃(−k2)
vs(k2)

] [
1

S̃(−p1)
ut(p1)

]
=

= −λ2(2π)4δ(k1 + k2 − p1 − p2)

[
ūr(k1)γµvs(k2)

1

(k1 + k2)2
v̄u(p2)γµu

t(p1)+

+ūr(k1)γµut(p1)
1

(k1 − p1)2
v̄u(p2)γµv

s(k2)

]
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where we used the fact, that the interacting Green function is in the lowest nonzero order equal to:

〈Ω|T ψ̃(k1) ˜̄ψ(k2) ˜̄ψ(−p1)ψ̃(−p2)|Ω〉 =

= (−iλ)2(2π)4δ(k1 + k2 − p1 − p2)
[
S̃(k1)γµS̃(−k2)Dµν(k1 + k2)S̃(p2)γν S̃(−p1)+

+S̃(k1)γµS̃(−p1)Dµν(k1 − p1)S̃(p2)γν S̃(−k2)
]

6.2.3 Low energy theories

Fermi-type theory

This is a low energy (m2
W � mµme) model for the EW interactions, that can be derived for example from the muon

decay:

µ− → e− + νµ + ν̄e

From the SM the relevant Lagrangian is

L =
g

2
√

2
(ēγµ(1− γ5)νeW

−
µ ) +

g

2
√

2
(µ̄γµ(1− γ5)νµW

−
µ )

and one gets the diagram µ− + ν̄µ+→ e− + ν̄e and the corresponding matrix element:

iM = −ig
2

8
[ūγµ(1− γ5)u]

−gµν + qµqν

m2
W

q2 −m2
W

[ūγν(1− γ5)v]

which when the momentum transfer q is much less than mw becomes

iM = −i g2

8m2
W

[ūγµ(1− γ5)u][ūγµ(1− γ5)v]

but this matrix element can be derived directly from the Lagrangian:

L = −Gµ√
2

[ψ̄νµγ
µ(1− γ5)ψµ][ψ̄eγ

µ(1− γ5)ψνe ]

with

Gµ√
2

=
g2

8m2
W

This is the universal V-A theory Lagrangian (after adding the h.c. term). Note that the Fermi constant GF is equal to
Gµ.

For the beta decay we get:

L = −Gβ√
2

[ψ̄pγ
µ(1− fγ5)ψn][ψ̄eγ

µ(1− γ5)ψνe ]

where Gβ = GF cos θC , θC = 13◦ is the Cabibbo angle and f .
= 1.26.
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6.3 Quantum Mechanics

6.3.1 From QED to Quantum Mechanics

The QED Lagrangian density is

L = ψ̄(ih̄cγµDµ −mc2)ψ − 1

4
FµνF

µν

where

ψ =


ψ1

ψ2

ψ3

ψ4


and

Dµ = ∂µ +
i

h̄
eAµ

is the gauge covariant derivative and (e is the elementary charge, which is 1 in atomic units, i.e. the electron has a
charge −e)

Fµν = ∂µAν − ∂νAµ

is the electromagnetic field tensor. It’s astonishing, that this simple Lagrangian can account for all phenomena from
macroscopic scales down to something like 10−13 cm. So it’s not a surprise that Feynman, Schwinger and Tomonaga
received the 1965 Nobel Prize in Physics for such a fantastic achievement.

Plugging this Lagrangian into the Euler-Lagrange equation of motion for a field, we get:

(ih̄cγµDµ −mc2)ψ = 0

∂νF
νµ = −ecψ̄γµψ

The first equation is the Dirac equation in the electromagnetic field and the second equation is a set of Maxwell
equations (∂νF νµ = −ejµ) with a source jµ = cψ̄γµψ, which is a 4-current comming from the Dirac equation.

The fields ψ and Aµ are quantized. The first approximation is that we take ψ as a wavefunction, that is, it is a classical
4-component field. It can be shown that this corresponds to taking the tree diagrams in the perturbation theory.

We multiply the Dirac equation by γ0 from left to get:

0 = γ0(ih̄cγµDµ −mc2)ψ = γ0(ih̄cγ0(∂0 +
i

h̄
eA0) + icγi(∂i +

i

h̄
eAi)−mc2)ψ =

= (ih̄c∂0 + ih̄cγ0γi∂i − γ0mc2 − ceA0 − ceγ0γiAi)ψ

and we make the following substitutions (it’s just a formalism, nothing more): β = γ0, αi = γ0γi, pj = ih̄∂j ,
∂0 = 1

c
∂
∂t to get

(ih̄
∂

∂t
+ cαipi − βmc2 − ceA0 − ceαiAi)ψ = 0 .

or:

ih̄
∂ψ

∂t
= (cαi(−pi + eAi) + βmc2 + ceA0)ψ .
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This can be written as:

i
∂ψ

∂t
= Hψ ,

where the Hamiltonian is given by:

H = cαi(−pi + eAi) + βmc2 + ceA0 ,

or introducing the electrostatic potential φ = cA0 and writing the momentum as a vector (see the appendix for all the
details regarding signs):

H = cα · (p− eA) + βmc2 + eφ .

The right hand side of the Maxwell equations is the 4-current, so it’s given by:

jµ = cψ̄γµψ

Now we make the substitution ψ = e−imc
2tϕ, which states, that we separate the largest oscillations of the wavefunc-

tion and we get

j0 = cψ̄γ0ψ = cψ†ψ = cϕ†ϕ

ji = cψ̄γiψ = cψ†αiψ = cϕ†αiϕ

Nonrelativistic Limit in the Lagrangian

We use the identity ∂
∂t

(
e−imc

2tf(t)
)

= e−imc
2t(−imc2 + ∂

∂t )f(t) to get:

L = c2∂µψ∗∂µψ −m2c4ψ∗ψ =
∂

∂t
ψ∗

∂

∂t
ψ − c2∂iψ∗∂iψ −m2c4ψ∗ψ =

= (imc2 +
∂

∂t
)ϕ∗(−imc2 +

∂

∂t
)ϕ− c2∂iϕ∗∂iϕ−m2c4ϕ∗ϕ =

= 2mc2
[

1

2
i(ϕ∗

∂ϕ

∂t
− ϕ∂ϕ

∗

∂t
)− 1

2m
∂iϕ∗∂iϕ+

1

2mc2
∂ϕ∗

∂t

∂ϕ

∂t

]
The constant factor 2mc2 in front of the Lagrangian is of course irrelevant, so we drop it and then we take the limit
c→∞ (neglecting the last term) and we get

L =
1

2
i(ϕ∗

∂ϕ

∂t
− ϕ∂ϕ

∗

∂t
)− 1

2m
∂iϕ∗∂iϕ

After integration by parts we arrive at the Lagrangian for the Schrödinger equation:

L = iϕ∗
∂ϕ

∂t
− 1

2m
∂iϕ∗∂iϕ
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Klein-Gordon Equation

The Dirac equation implies the Klein-Gordon equation:

0 = (−ih̄cγµDµ −mc2)(ih̄cγνDν −mc2)ψ = (h̄2c2γµγνDµDν +m2c4)ψ =

= (h̄2c2gµνDµDν +m2c4)ψ = (h̄2c2DµDµ +m2c4)ψ

Note however, the ψ in the true Klein-Gordon equation is just a scalar, but here we get a 4-component spinor. Now:

DµDν = (∂µ + ieAµ)(∂ν + ieAν) = ∂µ∂ν + ie(Aµ∂ν +Aν∂µ + (∂µAν))− e2AµAν

[Dµ, Dν ] = DµDν −DνDµ = ie(∂µAν)− ie(∂νAµ)

We rewrite DµDµ:

DµDµ = gµνDµDν = ∂µ∂µ + ie((∂µAµ) + 2Aµ∂µ)− e2AµAµ =

= ∂µ∂µ + ie((∂0A0) + 2A0∂0 + (∂iAi) + 2Ai∂i)− e2(A0A0 +AiAi) =

= ∂µ∂µ + i
1

c2
∂V

∂t
+ 2i

V

c2
∂

∂t
+ ie(∂iAi) + 2ieAi∂i −

V 2

c2
− e2AiAi

The nonrelativistic limit can also be applied directly to the Klein-Gordon equation:

0 = (h̄2c2DµDµ +m2c4)ψ =

=

(
h̄2c2∂µ∂µ + i

∂V

∂t
+ 2iV

∂

∂t
+ ih̄ec2(∂iAi) + 2ih̄ec2Ai∂i − V 2 − e2c2AiAi +m2c4

)
e−

i
h̄mc

2tϕ =

=

(
h̄2 ∂

2

∂t2
− c2h̄2∇2 + 2iV

∂

∂t
+ i

∂V

∂t
+ ih̄ec2(∂iAi) + 2ih̄ec2Ai∂i − V 2 − e2c2AiAi +m2c4

)
e−

i
h̄mc

2tϕ =

= e−
i
h̄mc

2t

(
h̄2(− i

h̄
mc2 +

∂

∂t
)2 − h̄2c2∇2 + 2iV (− i

h̄
mc2 +

∂

∂t
) + i

∂V

∂t
+ ih̄ec2(∂iAi) + 2ih̄ec2Ai∂i − V 2+

−e2c2AiAi +m2c4
)
ϕ =

= e−
i
h̄mc

2t

(
−2ih̄mc2

∂

∂t
+ h̄2 ∂

2

∂t2
− c2h̄2∇2 + 2V m

c2

h̄
+ 2iV

∂

∂t
+ i

∂V

∂t
+ ih̄ec2(∂iAi) + 2ih̄ec2Ai∂i − V 2+

−e2c2AiAi
)
ϕ =

= −2mc2e−
i
h̄mc

2t

(
ih̄
∂

∂t
+ h̄2∇2

2m
− V − 1

2mc2
∂2

∂t2
− i

2mc2
∂V

∂t
+

V 2

2mc2
− iV

mc2
∂

∂t
+

− ih̄e
2m

∂iAi −
ih̄e

m
Ai∂i +

e2

2m
AiAi

)
ϕ
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Taking the limit c→∞ we again recover the Schrödinger equation:

ih̄
∂

∂t
ϕ =

(
−h̄2∇2

2m
+ V +

ih̄e

2m
∂iAi +

ih̄e

m
Ai∂i −

e2

2m
AiAi

)
ϕ ,

we rewrite the right hand side a little bit:

ih̄
∂

∂t
ϕ =

(
h̄2

2m
(∂i∂i +

i

h̄
e∂iAi + 2

i

h̄
eAi∂i −

e2

h̄2A
iAi) + V

)
ϕ ,

ih̄
∂

∂t
ϕ =

(
h̄2

2m
(∂i +

i

h̄
eAi)(∂i +

i

h̄
eAi) + V

)
ϕ ,

ih̄
∂

∂t
ϕ =

(
1

2m
h̄2DiDi + V

)
ϕ ,

Using (see the appendix for details):

h̄2DiDi = −h̄2δijD
iDj = −h̄2

(
i

h̄
(p− eA)

)2

= (p− eA)2

we get the usual form of the Schrödinger equation for the vector potential:

ih̄
∂

∂t
ϕ =

(
(p− eA)2

2m
+ V

)
ϕ .

A little easier derivation:

0 = (h̄2c2DµDν +m2c4)ψ =

= (h̄2c2D0D0 + h̄2c2DiDi +m2c4)ψ =

= 2mc2
(
h̄2

2m
D0D0 +

h̄2

2m
DiDi + 1

2mc
2

)
ψ =

= 2mc2
(
h̄2

2m

(
∂0 +

i

h̄
eA0

)(
∂0 +

i

h̄
eA0

)
+ 1

2mc
2 +

h̄2

2m
DiDi

)
e−

i
h̄mc

2tϕ =

= 2mc2
(
h̄2

2m

(
∂0 +

i

h̄
eA0

)
e−

i
h̄mc

2t

(
∂0 −

i

h̄
mc+

i

h̄
eA0

)
+ 1

2mc
2 +

h̄2

2m
DiDi

)
ϕ =

= 2mc2e−
i
h̄mc

2t

(
h̄2

2m

(
∂0 − i

h̄
mc+

i

h̄
eA0

)(
∂0 −

i

h̄
mc+

i

h̄
eA0

)
+ 1

2mc
2 +

h̄2

2m
DiDi

)
ϕ =

= 2mc2e−
i
h̄mc

2t

(
h̄2

2m
∂0∂0 − 1

2mc
2 − e2A0A0

2m
+ ceA0 +

h̄2

m

i

h̄
e(∂0A0 +A0∂0)− ih̄c∂0 + 1

2mc
2 +

h̄2

2m
DiDi

)
ϕ =

= 2mc2e−
i
h̄mc

2t

(
−ih̄ ∂

∂t
+
h̄2

2m
DiDi + ceA0 +

h̄2

2mc2
∂2

∂t2
− e2φ2

2mc2
+

ieh̄

mc2
(
∂

∂t
φ+ φ

∂

∂t
)

)
ϕ =

= 2mc2e−
i
h̄mc

2t

(
−ih̄ ∂

∂t
+

(p− eA)2

2m
+ eφ+

h̄2

2mc2
∂2

∂t2
− e2φ2

2mc2
+

ieh̄

mc2
(
∂

∂t
φ+ φ

∂

∂t
)

)
ϕ

and letting c→∞ we get the Schrödinger equation:

ih̄
∂

∂t
ϕ =

(
(p− eA)2

2m
+ eφ

)
ϕ
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6.3.2 Perturbation Theory

We want to solve the equation:

ih̄
d

dt
|ψ(t)〉 = H(t) |ψ(t)〉 (6.2)

with H(t) = H0 +H1(t), where H0 is time-independent part whose eigenvalue problem has been solved:

H0 |n0〉 = E0
n |n0〉

and H1(t) is a small time-dependent perturbation. |n0〉 form a complete basis, so we can express |ψ(t)〉 in this basis:

|ψ(t)〉 =
∑
n

dn(t)e−
i
h̄E

0
nt |n0〉 (6.3)

Substituting this into (6.2), we get:∑
n

(
ih̄

d

dt
dn(t) + E0

ndn(t)

)
e−

i
h̄E

0
nt |n0〉 =

∑
n

(
E0
ndn(t) +H1dn(t)

)
e−

i
h̄E

0
nt |n0〉

so: ∑
n

ih̄
d

dt
(dn(t)) e−

i
h̄E

0
nt |n0〉 =

∑
n

dn(t)e−
i
h̄E

0
ntH1 |n0〉

Choosing some particular state |f0〉 of the H0 Hamiltonian, we multiply the equation from the left by 〈f0| e ih̄E
0
f t:∑

n

ih̄
d

dt
(dn(t)) eiwfnt 〈f0|n0〉 =

∑
n

dn(t)eiwfnt 〈f0|H1|n0〉

where wfn =
E0
f−E

0
n

h̄ . Using 〈f0|n0〉 = δfn:

ih̄
d

dt
df (t) =

∑
n

dn(t)eiwfnt 〈f0|H1|n0〉

we integrate from t1 to t:

ih̄ ((df (t)− df (t1)) =
∑
n

∫ t

t1

dn(t′)eiwfnt
′
〈f0|H1(t′)|n0〉dt′

Let the initial wavefunction at time t1 be some particular state |ψ(t1)〉 = |i0〉 of the unperturbed Hamiltonian, then
dn(t1) = δni and we get:

df (t) = δfi −
i

h̄

∑
n

∫ t

t1

dn(t′)eiwfnt
′
〈f0|H1(t′)|n0〉dt′ (6.4)

This is the equation that we will use for the perturbation theory.

In the zeroth order of the perturbation theory, we set H1(t) = 0 and we get:

df (t) = δfi

In the first order of the perturbation theory, we take the solution dn(t) = δni obtained in the zeroth order and substitute
into the right hand side of (6.4):

df (t) = δfi −
i

h̄

∫ t

t1

eiwfit
′
〈f0|H1(t′)|i0〉dt′

134 Chapter 6. Quantum Field Theory and Quantum Mechanics



Theoretical Physics Reference, Release 0.1

In the second order, we take the last solution, substitute into the right hand side of (6.4) again:

df (t) = δfi +

(
− i
h̄

)∫ t

t1

eiwfit
′
〈f0|H1(t′)|i0〉dt′+

+

(
− i
h̄

)2∑
n

∫ t

t1

dt′′
∫ t′′

t1

dt′eiwfnt
′′
〈f0|H1(t′′)|n0〉 eiwnit

′
〈n0|H1(t′)|i0〉

And so on for higher orders of the perturbation theory — more terms will arise on the right hand side of the last
formula, so this is our main formula for calculating the dn(t) coefficients.

Time Independent Perturbation Theory

As a special case, if H1 doesn’t depend on time, the coefficients dn(t) simplify, so we calculate them in this section
explicitly. Let’s take

H(t) = H0 + et/τH1

so at the time t1 = −∞ the Hamiltonian H(t) = H0 is unperturbed and we are interested in the time t = 0, when the
Hamiltonian becomes H(t) = H0 +H1 (the coefficients dn(t) will still depend on the τ variable) and we do the limit
τ →∞ (this corresponds to smoothly applying the perturbation H1 at the time negative infinity).

Let’s calculate df (0):

df (0) = δfi +

(
− i
h̄

)∫ 0

−∞
eiwfit

′
e
t
τ dt′ 〈f0|H1|i0〉+

+

(
− i
h̄

)2∑
n

∫ 0

−∞
dt′′

∫ t′′

−∞
dt′eiwfnt

′′
eiwnit

′
e
t′′
τ e

t′
τ 〈f0|H1|n0〉 〈n0|H1|i0〉 =

= δfi +

(
− i
h̄

)
1

1
τ + iωfi

〈f0|H1|i0〉+

+

(
− i
h̄

)2∑
n

1
1
τ + iωni

1
2
τ + iωfn + iωni

〈f0|H1|n0〉 〈n0|H1|i0〉

Taking the limit τ →∞:

df (0) = δfi +

(
− 1

h̄

)
1

ωfi
〈f0|H1|i0〉+

+

(
− 1

h̄

)2∑
n

1

ωni

1

ωfn + ωni
〈f0|H1|n0〉 〈n0|H1|i0〉 =

= δfi −
〈f0|H1|i0〉
E0
f − E0

i

+

+
∑
n

〈f0|H1|n0〉 〈n0|H1|i0〉
(E0

n − E0
i )(E0

f − E0
i )
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Substituting this into (6.3) evaluated for t = 0:

|ψ(0)〉 =
∑
n

dn(0) |n0〉 =

= |i0〉 −
∑
n

|n0〉 〈n0|H1|i0〉
E0
n − E0

i

+

+
∑
n,m

|n0〉 〈n0|H1|m0〉 〈m0|H1|i0〉
(E0

m − E0
i )(E0

n − E0
i )

The sum
∑
n is over all n 6= i, similarly for the other sum. Let’s also calculate the energy:

E = 〈ψ(0)|H|ψ(0)〉 = 〈ψ(0)|H0 +H1|ψ(0)〉 =

· · · −∑
n′ 6=i

〈i0|H1|n′0〉 〈n′0|
E0
n′ − E0

i

+ 〈i0|

 (H0 +H1)

|i0〉 −∑
n6=i

|n0〉 〈n0|H1|i0〉
E0
n − E0

i

+ · · ·


To evaluate this, we use the fact that 〈i0|H0|i0〉 = E0

i and 〈i0|H0|n0〉 = E0
i δni:

E = E0
i + 〈i0|H1|i0〉 −

∑
n 6=i

〈i0|H1|n0〉 〈n0|H1|i0〉
E0
n − E0

i

+ · · · =

= E0
i + 〈i0|H1|i0〉 −

∑
n 6=i

| 〈n0|H1|i0〉 |2

E0
n − E0

i

+ · · ·

Where we have neglected the higher order terms, so we can identify the corrections to the energy E coming from the
particular orders of the perturbation theory:

E0
i = 〈i0|H0|i0〉

E1
i = 〈i0|H1|i0〉

E2
i = −

∑
n 6=i

| 〈n0|H1|i0〉 |2

E0
n − E0

i

6.3.3 Scattering Theory

The incoming plane wave state is a solution of

H0 |k〉 = Ek |k〉

with H0 = p2

2m . E.g.

〈r|k〉 = eir·k
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Ek =
h̄2k2

2m

We want to solve:

(H0 + V ) |ψ〉 = Ek |ψ〉

The solution of this is:

|ψ〉 = |k〉+
1

Ek −H0
V |ψ〉 = |k〉+GV |ψ〉

where

G =
1

Ek −H0

is the Green function for the Schrödinger equation. G is not unique, it contains both outgoing and ingoing waves. As
shown below, one can distinguish between these two by adding a small iε into the denominator, that moves the poles
of the Green functions above and below the x-axis:

G+ =
1

Ek −H0 + iε

G− =
1

Ek −H0 − iε

Both G+ and G− are well-defined and unique. One can calculate both Green functions explicitly:

G+(r, r′) = 〈r|G+|r′〉 = 〈r| 1

Ek −H0 + iε
|r′〉 =

=

∫
d3k′

〈r|k′〉 〈k′|r′〉
Ek − Ek′ + iε

=

∫
d3k′

eik
′·(r−r′)

Ek − Ek′ + iε
=

2m

h̄2

∫
d3k′

eik
′·(r−r′)

k2 − k′2 + iε
=

=
4πm

h̄2i|r− r′|

∫ ∞
−∞

d3k′k′
eik
′|r−r′|

k2 − k′2 + iε
=

4πm

h̄2i|r− r′|
(2πi)k

eik|r−r
′|

2k
=

=
4π2meik|r−r

′|

h̄2|r− r′|

G−(r, r′) = 〈r|G−|r′〉 = 〈r| 1

Ek −H0 − iε
|r′〉 = · · · = 4π2me−ik|r−r

′|

h̄2|r− r′|

Assuming |r′| � |r|, we can taylor expand |r− r′|:

|r− r′| = e−r
′·∇|r| =

(
1− r′ · ∇+ (−r′ · ∇)

2
+O

(
r′3
))
|r| = |r| − r′ · ∇|r|+O

(
r′2
)

=

= r − r′ · r̂ +O
(
r′2
)

and simplify the result even further:

G+(r, r′) =
4π2m

h̄2

eikr

r
e−ikr

′ ·̂r
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G−(r, r′) =
4π2m

h̄2

e−ikr

r
eikr

′ ·̂r

Note: both functions may be divided by the factor (2π)3 due to the momentum integration.

Let’s get back to the solution of the Schrödinger equation:

|ψ〉 = |k〉+G+V |ψ〉

It contains the solution |ψ〉 on both sides of the equation, so we express it explicitly:

|ψ〉 −G+V |ψ〉 = |k〉

|ψ〉 =
1

1−G+V
|k〉

and multiply by V :

V |ψ〉 =
V

1−G+V
|k〉 = T |k〉

where T is the transition matrix:

T =
V

1−G+V
= V (1 +G+V + (G+V )2 + · · · ) =

= V + V G+V + V G+V G+V + · · · =

= V + V
1

Ek −H0 + iε
V + V

1

Ek −H0 + iε
V

1

Ek −H0 + iε
V + · · ·

Then the final solution is:

|ψ〉 = |k〉+G+V |ψ〉 = |k〉+G+T |k〉

and in a coordinate representation:

ψ(r) = 〈r|ψ〉 = 〈r|k〉+ 〈r|G+T |k〉 = 〈r|k〉+

∫
d3r′ 〈r|G+|r′〉 〈r′|T |k〉 =

= 〈r|k〉+

∫
d3r′d3k′ 〈r|G+|r′〉 〈r′|k′〉 〈k′|T |k〉 =

= eik·r +

∫
d3r′d3k′G+(r, r′)eik

′·r′ 〈k′|T |k〉

Plugging the representation of the Green function for |r′| � |r| in:

ψ(r) = eik·r +
4π2m

h̄2

eikr

r

∫
d3r′d3k′e−ikr

′ ·̂reik
′·r′ 〈k′|T |k〉 =

= eik·r +
4π2m

h̄2

eikr

r

∫
d3r′d3k′eir

′·(k′−kr̂) 〈k′|T |k〉 =

= eik·r +
4π2m

h̄2

eikr

r

∫
d3k′δ(k′ − kr̂) 〈k′|T |k〉 =
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= eik·r +
4π2m

h̄2

eikr

r
〈kr̂|T |k〉 =

= eik·r + f(θ, φ)
eikr

r

where the scattering amplitude f(θ, φ) is:

f(θ, φ) =
4π2m

h̄2 〈kr̂|T |k〉 =
4π2m

h̄2 〈k′|T |k〉

Where k′ = kr̂ is the final momentum.

The differential cross section dσ
dΩ is defined as the probability to observe the scattered particle in a given state per solid

angle, e.g. the scattered flux per unit of solid angle per incident flux:

dσ

dΩ
=

1

|ji|
dn

dΩ
=

r2

|ji|
dn

r2dΩ
=

r2

|ji|
dn

dS
=

r2

|ji|
jo · n =

r2

|ji|
jo · r̂ =

=
r2

h̄k
m

h̄k

m

(
1

r2
+

i

kr3

)
|f(θ, φ)|2 =

(
1 +

i

kr

)
|f(θ, φ)|2 → |f(θ, φ)|2

where we used |ji| = h̄k
m and

jo · r̂ =
h̄

2mi
(ψ∗∇ψ − ψ∇ψ∗) · r̂ =

h̄

2mi

(
ψ∗

∂

∂r
ψ − ψ ∂

∂r
ψ∗
)

=

=
h̄

2mi

(
f∗(θ, φ)

e−ikr

r

∂

∂r

(
f(θ, φ)

eikr

r

)
− f(θ, φ)

eikr

r

∂

∂r

(
f∗(θ, φ)

e−ikr

r

))
=

=
h̄k

m

(
1

r2
+

i

kr3

)
|f(θ, φ)|2

Let’s write the explicit formula for the transition matrix:

〈k′|T |k〉 =

∫
d3r 〈k′|r〉 〈r|V |k〉+

∫
d3rd3r′ 〈k′|r〉 〈r|V G+|r′〉 〈r′|V |k〉+ · · · =

=

∫
d3rei(k−k

′)·rV (r) +

∫
d3rd3r′e−ik

′·rV (r)
eik|r−r

′|

|r− r′|
V (r′)eik·r

′
+ · · · =

The Born approximation is just the first term:

〈k′|T |k〉 ≈
∫

d3rei(k−k
′)·rV (r) =

∫
dr dθ dφ eiqr cos θV (r)r2 sin θ =

= 4π

∫ ∞
0

rV (r) sin(qr) dr
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6.4 Systematic Perturbation Theory in QM

We have

H = H0 + e−ε|t|H1

where the ground state of the noninteracting Hamiltonian H0 is:

H0 |0〉 = E0 |0〉

and the ground state of the interacting Hamiltonian H is:

H |Ω〉 = E |Ω〉

Then:

H |Ω〉 = (H0 +H1) |Ω〉 = E |Ω〉
〈0|H0 +H1|Ω〉 = E 〈0|Ω〉

E0 〈0|Ω〉+ 〈0|H1|Ω〉 = E 〈0|Ω〉

E = E0 +
〈0|H1|Ω〉
〈0|Ω〉

We can also write

|Ω〉 = lim
ε→0+

Uε(0,−∞) |0〉

where

Uε(t, t0) = T exp

(
− i
h̄

∫ t

t0

dt′e−ε|t
′|H1(t′)

)
Let’s write several common expressions for the ground state energy:

∆E = E − E0 =
〈0|H1|Ω〉
〈0|Ω〉

=
〈0|H1U(0,−∞)|0〉
〈0|U(0,−∞)|0〉

=

= lim
t→0

〈0|H1U(t,−∞)|0〉
〈0|U(t,−∞)|0〉

= lim
t→0

〈0|i∂tU(t,−∞)|0〉
〈0|U(t,−∞)|0〉

= lim
t→0

i∂t 〈0|U(t,−∞)|0〉
〈0|U(t,−∞)|0〉

=

= lim
t→0

i∂t log 〈0|U(t,−∞)|0〉 ≡ lim
t→∞(1−iε)

i
d

dt
log 〈0|U(t,−∞)|0〉

The last expression incorporates the ε dependence of Uε explicitly. The vacuum amplitude is sometimes denoted by
R(t):

R(t) = 〈0|U(t,−∞)|0〉

The two point (interacting) Green (or correlation) function is:

G(x, y) = 〈Ω|Tφ(x)φ(y)|Ω〉 =
〈0|Tφ(x)φ(y)U(∞,−∞)|0〉

〈0|U(∞,−∞)|0〉

The ε→ 0 limit of Uε is tacitly assumed to make this formula well defined (sometimes the other way t→∞(1− iε)
of writing the same limit is used). Another way of writing the formula above for the Green function in QM is:

G(k1,k2, t2 − t1) = i 〈Ω|Tck2
(t2)c†k1

(t1)|Ω〉 = i
〈0|Tck2

(t2)c†k1
(t1)U(∞,−∞)|0〉

〈0|U(∞,−∞)|0〉
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Last type of similar expressions to consider is the scattering amplitude:

〈f |U(∞,−∞)|i〉

where the initial state is let’s say a boson+fermion and the final state a boson+antifermion:

|i〉 = a†kb
s†
l |0〉

|f〉 = a†pa
r†
q |0〉

This is just an example, the |i〉 and |f〉 states can contain any number of (arbitrary) particles.

6.5 Appendix

6.5.1 Units and Dimensional Analysis

The evolution operator is dimensionless:

U(−∞,∞) = T exp

(
i

h̄

∫ ∞
−∞

d4xL(x)

)
So: [∫ ∞

−∞
d4xL(x)

]
= [h̄] = M0

where M is an arbitrary mass scale. Length unit is M−1, so then

[L(x)] = M4

For the particular forms of the Lagrangians above we get:

[mēe] = [m2ZµZ
µ] = [m2H2] = [iēγµ∂µe] = [L] = M4

so [ēe] = M3, [ZµZ
µ] = [H2] = M2 and we get

[e] = [ē] = M
3
2

[Zµ] = [Zµ] = [H] = [∂µ] = [∂µ] = M1

Example: what is the dimension of Gµ in L = −Gµ√
2
[ψ̄νµγ

µ(1− γ5)ψµ][ψ̄eγ
µ(1− γ5)ψνe ]? Answer:

[L] = [Gµψ̄ψψ̄ψ]

M4 = [Gµ]M
3
2M

3
2M

3
2M

3
2

[Gµ] = M−2

In order to get the above units from the SI units, one has to do the following identification:

kg →M1

m→M−1
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s→M−1

A→M1

The SI units of the above quantities are:

[φ] = V =
kg m2

A s3
= M

[Aµ] =
[φ]

[c]
=

V s

m
=

kg m

A s2
= M

[c] =
m

s
= 1

[e] = C = A s = 1

[h̄] = J s =
m2 kg

s
= 1

[∂µ] =
1

m
= M

[Fµν ] = [∂µAν ] =
kg

A s2
= M2

[L] = [Fµν ]2 =
kg2

A2 s4
= M4

[ψ] =
kg

1
2

A m s
= M

3
2

The SI units are useful for checking that the c, e and h̄ constants are at correct places in the expression.

6.5.2 Tensors in Special Relativity and QFT

In general, the covariant and contravariant vectors and tensors work just like in special (and general) relativity. We use
the metric gµν = diag(1,−1,−1,−1) (e.g. signature -2, but it’s possible to also use the metric with signature +2).
The four potential Aµ is given by:

Aµ =

(
φ

c
,A

)
= (A0, A1, A2, A3)

where φ is the electrostatic potential. Whenever we write A, the components of it are given by the upper indices, e.g.
A = (A1, A2, A3). The components with lower indices can be calculated using the metric tensor, so it depends on the
signature convention:

Aµ = gµνA
ν = (A0,−A) = (A0,−A1,−A2,−A3)
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In our case we got A0 = A0 and Ai = −Ai (if we used the other signature convention, then the sign of A0 would
differ and Ai would stay the same). The length (squared) of the vector is:

A2 = AµA
µ =

(
A0
)2 − |A|2 =

(
A0
)2 −A2

where A2 ≡ |A|2 = (A1)2 + (A2)2 + (A3)2.

The position 4-vector is (in any metric):

xµ = (ct,x)

Gradient is defined as (in any metric):

∂µ = (∂0, ∂1, ∂2, ∂3) =
∂

∂xµ
=

(
1

c

∂

∂t
,
∂

∂x
,
∂

∂y
,
∂

∂z

)
the upper indices depend on the signature, e.g. for -2:

∂µ = (∂0, ∂1, ∂2, ∂3) =

(
1

c

∂

∂t
,− ∂

∂x
,− ∂

∂y
,− ∂

∂z

)
and +2:

∂µ = (∂0, ∂1, ∂2, ∂3) =

(
−1

c

∂

∂t
,
∂

∂x
,
∂

∂y
,
∂

∂z

)
The d’Alembert operator is:

∂2 ≡ ∂µ∂µ

the 4-velocity is (in any metric):

vµ =
dxµ

dτ
=

dt

dτ

dxµ

dt
= γ(c,v)

where τ is the proper time, γ = dt
dτ = 1√

1− v2

c2

and v = dx
dt is the velocity in the coordinate time t. In the metric with

signature +2:

v2 = vµv
µ = gµνv

µvν = −γ2c2 + γ2v2 =
−c2 + v2

1− v2

c2

= −c2

With signature -2 we get v2 = c2. The 4-momentum is (in any metric)

pµ = mvµ = mγ(c,v)

where m is the rest mass. The fluid-density 4-current is (in any metric):

jµ = ρvµ = ργ(c,v)

where ρ is the fluid density at rest. For example the vanishing 4-divergence (the continuity equation) is written as (in
any metric):

0 = ∂µj
µ =

1

c

∂

∂t
(ργc) +∇ · (ργv) =

∂

∂t
(ργ) +∇ · (ρvγ) =

∂

∂t

 ρ√
1− v2

c2

+∇ ·

 ρv√
1− v2

c2


Momentum (p = −ih̄∇) and energy (E = ih̄ ∂

∂t ) is combined into 4-momentum as

pµ =

(
E

c
,p

)
= ih̄

(
1

c

∂

∂t
,−∇

)
= ih̄ (∂0,−∂j) = ih̄

(
∂0, ∂j

)
= ih̄∂µ

pµ = gµνp
ν = ih̄gµν∂

ν = ih̄∂µ
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For the signature +2 we get pµ = −ih̄∂µ and pµ = −ih̄∂µ.

For p2 we get (signature -2):

p2 = pµp
µ = (p0)2 − p2 = (p0)2 − p2 =

E2

c2
− p2

p2 = pµp
µ = m2vµv

µ = m2c2

comparing those two we get the following useful relations (valid in any metric):

E2

c2
− p2 = m2c2

E2 = m2c4 + p2c2

E =
√
m2c4 + p2c2 = mc2

√
1 +

p2

m2c2
= mc2

(
1 +

p2

2m2c2
+O

(
p4

m4c4

))
=

= mc2 +
p2

2m
+O

(
p4

m3c2

)
the following relations are also useful:

p2 = pµp
µ = −h̄2∂µ∂

µ ≡ −h̄2∂2 = −h̄2
(
∂0∂

0 + ∂i∂
i
)

= −h̄2 (∂0∂0 − ∂i∂i) =

= −h̄2

(
1

c2
∂2

∂t2
−∇2

)
= − h̄

2

c2
∂2

∂t2
+ h̄2∇2

For the signature +2 we get:

p2 = pµp
µ = −h̄2∂µ∂

µ ≡ −h̄2∂2 = −h̄2
(
∂0∂

0 + ∂i∂
i
)

= −h̄2 (−∂0∂0 + ∂i∂i) =

= −h̄2

(
− 1

c2
∂2

∂t2
+∇2

)
=
h̄2

c2
∂2

∂t2
− h̄2∇2

So for example the Klein-Gordon equation:(
h̄2

c2
∂2

∂t2
− h̄2∇2 +m2c2

)
ψ = 0

can be for signature −2 written as:

(+h̄2∂2 +m2c2)ψ = (−p2 +m2c2)ψ = 0

and for +2 as:

(−h̄2∂2 +m2c2)ψ = (p2 +m2c2)ψ = 0

Note: for the signature +2, we would get pµ = −ih̄∂µ and pµ = −ih̄∂µ.

For the minimal coupling Dµ = ∂µ + i
h̄eAµ we get:

D0 = ∂0 +
i

h̄
eA0

Dj = ∂j +
i

h̄
eAj = − i

h̄
(ih̄∂j − eAj) = − i

h̄
(p− eA)

and for the lower indices:

D0 = ∂0 +
i

h̄
eA0

Dj = ∂j +
i

h̄
eAj = − i

h̄
(ih̄∂j − eAj) =

i

h̄
(ih̄∂j − eAj) =

i

h̄
(p− eA)
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6.5.3 Multipole expansion

1

|r− r′|
=

1√
(r− r′)2

=
1√

r2 − 2r · r′ + r′2
=

1

r

√
1− 2

(
r′

r

)
r̂ · r̂′ +

(
r′

r

)2 =

=
1

r

∞∑
l=0

(
r′

r

)l
Pl(r̂ · r̂′) =

=
1

r

(
P0(r̂ · r̂′) + P1(r̂ · r̂′)r

′

r
+ P2(r̂ · r̂′)

(
r′

r

)2

+O

(
r′3

r3

))
=

=
1

r

(
1 + r̂ · r̂′ r

′

r
+ 1

2

(
3(r̂ · r̂′)2 − 1

)(r′
r

)2

+O

(
r′3

r3

))
=

=
1

r
+

r · r′

r3
+

3(r · r′)2 − r2r′2

2r5
+O

(
r′3

r4

)
We can also use the formula: ∑

m

〈r̂|lm〉 〈lm|̂r′〉 =
4π

2l + 1
〈r̂ · r̂′|Pl〉

and rewrite the expansion using spherical harmonics:

1

|r− r′|
=

1

r

∞∑
l=0

(
r′

r

)l
Pl(r̂ · r̂′) =

=
1

r

∑
l,m

(
r′

r

)l
2l + 1

4π
〈r̂|lm〉 〈lm|̂r′〉 =

1

r

∑
l,m

(
r′

r

)l
2l + 1

4π
Ylm(r̂)Y ∗lm(r̂′)

6.6 Examples

6.6.1 Two Particles in Harmonic Potential

It is a 1D, two-body problem with an interacting Hamiltonian

H(x1, x2) = − 1
2

∂2

∂x2
1

− 1
2

∂2

∂x2
2

+
1

|x1 − x2|
+ 1

2ω
2x2

1 + 1
2ω

2x2
2

and it can be solved analytically. The Schrödinger equation is(
− 1

2

∂2

∂x2
1

− 1
2

∂2

∂x2
2

+
1

|x1 − x2|
+ 1

2ω
2x2

1 + 1
2ω

2x2
2

)
Ψ(x1, x2) = EΨ(x1, x2)
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we use the substitution:

u =
1√
2

(x1 − x2)

v =
1√
2

(x1 + x2)

then

∂2

∂x2
1

+
∂2

∂x2
2

=
∂2

∂u2
+

∂2

∂v2

|x1 − x2| =
√

2|u|
x2

1 + x2
2 = u2 + v2

and (
− 1

2

∂2

∂u2
− 1

2

∂2

∂v2
+

1√
2|u|

+ 1
2ω

2u2 + 1
2ω

2v2

)
Ψ(u, v) = EΨ(u, v)

Note also the symmetry of the HamiltonianH(x1, x2) = H(x2, x1) which after substitution is equivalent toH(u, v) =
H(−u, v). Now we can separate the equation:

Ψ(u, v) = f(u)g(v)(
− 1

2

d2

du2
+

1√
2|u|

+ 1
2ω

2u2

)
fk(u) = εkfk(u)(

− 1
2

d2

dv2
+ 1

2ω
2v2

)
gl(v) = εlgl(v)

Ekl = εk + εl

the solution of the second equation is:

gl(v) =
1√
2ll!

(ω
π

) 1
4

e−
ωv2

2 Hl(
√
ωv)

εl = ω(l + 1
2 ) for l = 0, 1, 2, . . .

where Hn(x) are the Hermite polynomials:

Hn(x) = (−1)nex
2 dn

dxn
e−x

2

The solution to the first equation can be approximated around the minimum of the potential, which occurs at point
u = u0 (since the potential is symmetric with respect to u, we only treat the branch u > 0):

V (u) =
1√
2|u|

+ 1
2ω

2u2 =
(

2−
1
3 + 2−

4
3

)
ω

2
3 +

3

2
ω2(u− u0)2 +O

(
(u− u0)3

)
u0 = 2−

1
6ω−

2
3

So the first few states can be approximated by the harmonic oscillator solution with frequency
√

3ω:

fk(u) =
1√
2kk!

(√
3ω

π

) 1
4

e−
√

3ω(u−u0)2

2 Hk(3
1
4
√
ω(u− u0))

εk =
(

2−
1
3 + 2−

4
3

)
ω

2
3 +
√

3ω(k + 1
2 ) for k = 0, 1, 2, . . .
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The final solution is then:

Ψkl(u, v) = fk(u)gl(v) =

=
1√
2kk!

(√
3ω

π

) 1
4

e−
√

3ω(u−u0)2

2 Hk(3
1
4
√
ω(u− u0))

1√
2ll!

(ω
π

) 1
4

e−
ωv2

2 Hl(
√
ωv)

Ekl = εk + εl =
(

2−
1
3 + 2−

4
3

)
ω

2
3 +
√

3ω(k + 1
2 ) + ω(l + 1

2 )

6.6.2 Quantum Harmonic Oscillator

The quantum harmonic oscillator for one particle in 1D is:

ih̄
∂

∂t
ψ(x, t) = − h̄2

2m

∂2

∂x2
ψ(x, t) + V (x)ψ(x, t)

V (x) =
1

2
mω2x2

This is a partial differential equation for the time evolution of the wave function ψ(x, t), but one method to solve it is
the eigenvalues expansion:

ψ(x, t) =
∑
E

cEψE(x)e−
i
h̄Et

where the sum goes over the whole spectrum (for continuous spectrum the sum turns into an integral), the cE coeffi-
cients are determined from the initial condition and ψE(x) satisfies the one dimensional one particle time independent
Schrödinger equation:

− h̄2

2m

d2

dx2
ψE(x) + V (x)ψE(x) = EψE(x)

and this is just an ODE and thus can be solved with Hermes1D. There can be many types of boundary conditions
for this equation, depending on the physical problem, but in our case we simply have limx→±∞ ψE(x) = 0 and the
normalization condition

∫∞
−∞ |ψE(x)|2dx = 1.

We can set m = h̄ = 1 and from now on we’ll just write ψ(x) instead of ψE(x):

−1

2

d2

dx2
ψ(x) + V (x)ψ(x) = Eψ(x)

and we will solve it on the interval (a, b) with the boundary condition ψ(a) = ψ(b) = 0. The weak formulation is∫ b

a

1

2

dψ(x)

dx

dv(x)

dx
+ V (x)ψ(x)v(x) dx−

[
dψ(x)

dx
v(x)

]a
b

= E

∫ b

a

ψ(x)v(x) dx

but due to the boundary condition v(a) = v(b) = 0 so [ψ′(x)v(x)]
a
b = 0 and we get∫ b

a

1

2

dψ(x)

dx

dv(x)

dx
+ V (x)ψ(x)v(x) dx = E

∫ b

a

ψ(x)v(x) dx

And the finite element formulation is then ψ(x) =
∑
j yjφj(x) and v = φi(x):(∫ b

a

1

2
φ′i(x)φ′j(x) + V (x)φi(x)φj(x) dx

)
yj = E

∫ b

a

φi(x)φj(x) dx yj
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which is a generalized eigenvalue problem:

Aijyj = EBijyj

with

Aij =

∫ b

a

1

2
φ′i(x)φ′j(x) + V (x)φi(x)φj(x) dx

Bij =

∫ b

a

φi(x)φj(x) dx

6.6.3 Radial Schrödinger Equation

Another important example is the three dimensional one particle time independent Schrödinger equation for a spheri-
cally symmetric potential:

−1

2
∇2ψ(x) + V (r)ψ(x) = Eψ(x)

The way to solve it is to separate the equation into radial and angular parts by writing the Laplace operator in spherical
coordinates as:

∇2f =
∂2f

∂ρ2
+

2

ρ

∂2f

∂ρ2
− L2

ρ2

L2 = −∂
2f

∂θ2
− 1

sin2 θ

∂2f

∂φ2
− 1

tan θ

∂f

∂θ

Substituting ψ(x) = R(ρ)Y (θ, φ) into the Schrödinger equation yields:

−1

2
∇2(RY ) + V RY = ERY

−1

2
R′′Y − 1

ρ
R′Y +

L2RY

2ρ2
+ V RY = ERY

Using the fact that L2Y = l(l + 1)Y we can cancel Y and we get the radial Schrödinger equation:

−1

2
R′′ − 1

ρ
R′ +

l(l + 1)R

2ρ2
+ V R = ER

The solution is then:

ψ(x) =
∑
nlm

cnlmRnl(r)Ylm

(x

r

)
where Rnl(r) satisfies the radial Schrödinger equation (from now on we just write R(r)):

−1

2
R′′(r)− 1

r
R′(r) +

(
V +

l(l + 1)

2r2

)
R(r) = ER(r)

Again there are many types of boundary conditions, but the most common case is limr→∞R(r) = 0 and R(0) = 1 or
R(0) = 0. One solves this equation on the interval (0, a) for large enough a.
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The procedure is similar to the previous example, only we need to remember that we always have to use covariant
integration (in the previous example the covariant integration was the same as the coordinate integration), in this case
r2 sin θdrdθdφ, so the weak formulation is:∫ (

−1

2
R′′(r)− 1

r
R′(r) +

(
V +

l(l + 1)

2r2

)
R(r)

)
v(r)r2 sin θdrdθdφ =

=

∫
ER(r)v(r)r2 sin θdrdθdφ

Integrating over the angles gives 4π which we cancel out at both sides and we get:∫ a

0

(
−1

2
R′′(r)− 1

r
R′(r) +

(
V +

l(l + 1)

2r2

)
R(r)

)
v(r)r2dr =

= E

∫ a

0

R(r)v(r)r2dr

We apply per partes to the first two terms on the left hand side:∫ a

0

(
−1

2
R′′(r)− 1

r
R′(r)

)
v(r)r2dr =

∫ a

0

− 1

2r2

(
r2R′(r)

)′
v(r)r2dr =

=

∫ a

0

−1

2

(
r2R′(r)

)′
v(r)dr =

∫ a

0

1

2
r2R′(r)v′(r)dr − 1

2
[r2R′(r)v(r)]a0 =

=

∫ a

0

1

2
R′(r)v′(r)r2dr − 1

2
a2R′(a)v(a)

We used the fact that limr→0 r
2R′(r) = 0. If we also prescribe the boundary condition R′(a) = 0, then the boundary

term vanishes completely. The weak formulation is then:∫ a

0

1

2
R′(r)v′(r)r2 +

(
V +

l(l + 1)

2r2

)
R(r)v(r)r2 dr = E

∫ a

0

R(r)v(r)r2 dr

or ∫ a

0

1

2
R′(r)v′(r)r2 + V (r)R(r)v(r)r2 +

l(l + 1)

2
R(r)v(r) dr = E

∫ a

0

R(r)v(r)r2 dr

Another approach

Another (equivalent) approach is to write a weak formulation for the 3D problem in cartesian coordinates:∫
Ω

1

2
∇ψ(x)∇v(x) + V (r)ψ(x)v(x) d3x = E

∫
Ω

ψ(x)v(x) d3x

and only then transform to spherical coordinates:∫ 2π

0

dϕ

∫ π

0

dθ

∫ a

0

dr

(
1

2
∇ψ(x)∇v(x) + V (r)ψ(x)v(x)

)
r2 sin θ =

= E

∫ 2π

0

dϕ

∫ π

0

dθ

∫ a

0

dr ψ(x)v(x)r2 sin θ
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The 3d eigenvectors ψ(x) however are not spherically symmetric. Nevertheless we can still proceed by choosing our
basis as

vilm(x) = φil(r)Ylm(θ, ϕ)

and seek our solution as

ψ(x) =
∑
jlm

yjlmφjl(r)Ylm(θ, ϕ)

Using the properties of spherical harmonics and the gradient:∫
YlmYl′m′ sin θ dθ dϕ = δll′δmm′

∫
r2∇Ylm∇Yl′m′ sin θ dθ dϕ = l(l + 1)δll′δmm′

∇f =
∂f

∂r
r̂ +

1

r

∂f

∂θ
θ̂ +

1

r sin θ

∂f

∂φ
φ̂

the weak formulation becomes:(∫ a

0

1

2
r2φ′il(r)φ

′
jl(r) +

1

2
X +

l(l + 1)

2
φil(r)φjl(r) + r2V (r)φil(r)φjl(r) dr

)
yjlm =

= E

∫ a

0

r2φil(r)φjl(r) dr yjlm

where both l andm indices are given by the indices of the particular base function vilm. TheX term is (schematically):

X =

∫
r2 sin θ(r)Ylm(θ, ϕ)(φil∇φjl +∇φilφjl)∇Ylm

There is an interesting identity: ∫
rr̂Ylm∇Yl′m′ sin θ dθ dϕ = 0

But it cannot be applied, because we have one more r in the expression. Nevertheless the term is probably zero, as can
be seen when we compare the weak formulation to the one we got directly from the radial equation.

How Not To Derive The Weak Formulation

If we forgot that we have to integrate covariantly, this section is devoted to what happens if we integrate using the
coordinate integration. We would get:∫ a

0

1

2
R′(x)v′(x)− 1

r
R′(x)v(x) +

(
V +

l(l + 1)

2r2

)
R(x)v(x) dx = E

∫ a

0

R(x)v(x) dx

Notice the matrix on the left hand side is not symmetric. There is another way of writing the weak formulation by
applying per-partes to the R′(r)v(r) term:

−
∫ a

0

1

r
R′(x)v(x)dx =
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=

∫ a

0

1

r
R(x)v′(x)dx−

∫ a

0

1

r2
R(x)v(x)dx−

[
1

r
R′(x)v′(x)

]a
0

+

[
1

r2
R′(x)v(x)

]a
0

We can use v(a) = 0 and R′(a) = 0 to simplify a bit:

−
∫ a

0

1

r
R′(x)v(x)dx =

=

∫ a

0

1

r
R(x)v′(x)dx−

∫ a

0

1

r2
R(x)v(x)dx+ lim

r→0

(
R′(x)v′(x)

r
− R′(x)v(x)

r2

)
Since R(x) ∼ rl near r = 0, we can see that for l ≥ 3 the limits on the right hand side are zero, but for l = 0, 1, 2
they are not zero and need to be taken into account. Let’s assume l ≥ 3 for now, then our weak formulation looks like:∫ a

0

1

2
R′(x)v′(x) +

1

r
R(x)v′(x) +

(
V +

l(l + 1)

2r2
− 1

r2

)
R(x)v(x) dx = E

∫ a

0

R(x)v(x) dx

or ∫ a

0

1

2
R′(x)v′(x) +

1

r
R(x)v′(x) +

(
V +

(l − 2)(l + 1)

2r2

)
R(x)v(x) dx = E

∫ a

0

R(x)v(x) dx

The left hand side is also not symmetric, however we can now take an average of our both weak formulations to get a
symmetric weak formulation:∫ a

0

1

2
R′(x)v′(x) +

R(x)v′(x)−R′(x)v(x)

2r
+

(
V +

l(l + 1)− 1

2r2

)
R(x)v(x) dx =

= E

∫ a

0

R(x)v(x) dx

Keep in mind, that this symmetric version is only correct for l ≥ 3. For l < 3 we need to use our first nonsymmetric
version.

As you can see, this is something very different to what we got in the previous section. First there were lots of technical
difficulties and second the final result is wrong, since it doesn’t correspond to the 3D Schrödinger equation.

Scattering in radial potential

If V = 0, the radial equation is:

−1

2
R′′(r)− 1

r
R′(r) +

l(l + 1)

2r2
R(r) = ER(r)

The general solution is a linear combination of the spherical Bessel functions jl(kr) and nl(kr), whose asymptotic
expansion for r →∞ is:

jl(kr)→
1

kr
sin

(
kr − lπ

2

)
nl(kr)→

1

kr
cos

(
kr − lπ

2

)
so we get for large r:

Rl(kr) = Al
1

kr
sin

(
kr − lπ

2

)
+Bl

1

kr
cos

(
kr − lπ

2

)
=

=
√
A2
l +B2

l

1

kr
sin

(
kr − lπ

2
+ δl

)
= Cl

1

kr
sin

(
kr − lπ

2
+ δl

)
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where

δl = atan2(Bl, Al)

Cl =
√
A2
l +B2

l

We can then compare this to φ ≈ eikz + f(θ, φ) e
ikr

r , by expanding eikz = eikr cos θ =
∑

(2l + 1)iljl(kr)Pl(cos θ):

Cl =
eiδl

k

f(θ, φ) =
1

2ik

∑
(2l + 1)(e2iδl − 1)Pl(cos θ)

Since σ(θ) = |f(θ)|2 and integrating over ω we get the total cross section:

σ =
4π

k

∑
(2l + 1) sin2 δl

In order to find the phase shifts δl, we solve the radial equation for the full potential

−1

2
R′′(r)− 1

r
R′(r) +

(
V +

l(l + 1)

2r2

)
R(r) = ER(r)

and then fit it to the above asymptotic solution for V=0. We require that the value and the slope must be continuous.
In particular, we take the logarithmic derivative ((log u)′ = u′

u ) at the point r = a:

γl ≡
d

dr
log u

∣∣∣∣
r=a

=
d

dr
logRl(kr)

∣∣∣∣
r=a

expressing Rl(kr) using δl and solving for it we get:

tan δl =
kj′l(ka)− γljl(ka)

kn′l(ka)− γlnl(ka)

Now we can use these δl in the formula for the total cross section.

The problem can now be formulated in two ways. Either to solve the radial equation for a potential with finite reach and
then “measure” those phase shifts in the solution. Or by prescribing those phase shifts and we now need to calculate
the solutions (e.g. the energies) from the radial equation.

6.7 Radial Schrödinger and Dirac Equations

6.7.1 Variational Formulation of the Schrödinger equation

Lagrangian is:

L(ψ) = 1
2 (∇ψ)2 + V (x)ψ2(x)

Subject to the normalization constrain:

N [ψ] =

∫
|ψ(x)|2d3x− 1 = 0

The action is:

S[ψ] =

∫
Ld3x
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Variating it (subject to the normalization condition) we get:

0 = δ(S − εN) = δ

∫
1
2 (∇ψ)2 + V (x)ψ2(x)d3x− ε

(∫
|ψ(x)|2d3x− 1

)
=

=

∫
(∇ψ) · (∇δψ) + 2V ψδψ − 2εψδψd3x

= 2

∫ (
− 1

2∇
2ψ + V ψ − εψ

)
δψd3x+

∫
(n · ∇ψ)δψ d2x

Which gives the Schrödinger equation assuming the surface integral vanishes.

Note: to apply the variation δ correctly, one uses the definition:

δF [ψ] ≡ d

dε
F [ψ + εδψ]

∣∣∣∣
ε=0

Weak Formulation

The weak formulation is obtained from the above by substituting δψ → v (the test function) so we get:∫
1
2 (∇ψ) · (∇v) + V ψv − εψv d3x

6.7.2 Radial Schrödinger equation

There are two ways to obtain the radial Schrödinger equation. Either from the Lagrangian, or from the equation itself.

From the Equation

−1

2
∇2ψ(x) + V (r)ψ(x) = Eψ(x)

The way to solve it is to separate the equation into radial and angular parts by writing the Laplace operator in spherical
coordinates as:

∇2f =
∂2f

∂ρ2
+

2

ρ

∂2f

∂ρ2
− L2f

ρ2

L2 = − ∂2

∂θ2
− 1

sin2 θ

∂2

∂φ2
− 1

tan θ

∂

∂θ

Substituting ψ(x) = R(ρ)Y (θ, φ) into the Schrödinger equation yields:

−1

2
∇2(RY ) + V RY = ERY

−1

2
R′′Y − 1

ρ
R′Y +

L2RY

2ρ2
+ V RY = ERY

Using the fact that L2Y = l(l + 1)Y we can cancel Y and we get the radial Schrödinger equation:

−1

2
R′′ − 1

ρ
R′ +

l(l + 1)R

2ρ2
+ V R = ER
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From the Lagrangian

We need to convert the Lagrangian to spherical coordinates. In order to easily make sure we do things covariantly, we
start from the action (which is a scalar):

S[ψ] =

∫
1
2 (∇ψ)2 + V (x)ψ2(x) d3x =

=

∫
( 1

2 (∇(RY ))2 + V (RY )2)ρ2dρdΩ =

=

∫
( 1

2 (R′2Y 2 +R2(∇Y )2 + 2RR′(ρ̂Y ) · ∇Y ) + V (RY )2)ρ2dρdΩ =

=

∫ (
1
2

(
R′2 +R2 l(l + 1)

ρ2

)
+ V R2

)
ρ2dρ =

=

∫
1
2ρ

2R′2 + (ρ2V + 1
2 l(l + 1))R2 dρ =

where we used the following properties of spherical harmonics:∫
Y 2dΩ = 1∫

ρ2(∇Y )2dΩ = l(l + 1)

(Y ρ̂) · (ρ∇Y ) = 0

We now minimize the action (subject to the normalization
∫
ρ2R2dρ = 1) to obtain the radial equation:

0 = δ(S − εN) = δ

∫
1
2ρ

2R′2 + (ρ2V + 1
2 l(l + 1))R2 − ερ2R2 dρ =

= 2

∫
1
2ρ

2R′(δR)′ + (ρ2V + 1
2 l(l + 1))RδR− ερ2RδR dρ =

= 2

∫ (
(− 1

2ρ
2R′)′ + (ρ2V + 1

2 l(l + 1))R− ερ2R
)
δR dρ+ [ρ2R′δR]ab

So the radial equation is:

(− 1
2ρ

2R′)′ + (ρ2V + 1
2 l(l + 1))R = ερ2R

In agreement with the previous result.

Weak Formulation

The weak formulation is obtained from the action above by substituting δR→ v (the test function) so we get:∫
1
2ρ

2R′v′ + (ρ2V + 1
2 l(l + 1))Rv dρ = ε

∫
ρ2Rv dρ

We can also start from the equation itself, multiply by a test function v:

(− 1
2ρ

2R′)′v + (ρ2V + 1
2 l(l + 1))Rv = ερ2Rv

We integrate it. Normally we need to be using ρ2dρ in order to integrate covariantly, but the above equation was
already multiplied by ρ2 (i.e. strictly speaking, it is not coordinate independent anymore), so we only integrate by dρ:∫

(− 1
2ρ

2R′)′v + (ρ2V + 1
2 l(l + 1))Rvdρ = ε

∫
ρ2Rvdρ
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After integration by parts:∫
1
2ρ

2R′v′ + (ρ2V + 1
2 l(l + 1))Rvdρ− 1

2 [ρ2R′v]a0 = ε

∫
ρ2Rvdρ

Where a is the end of the domain (the origin is at 0). The boundary term is zero at the origin, so we get:∫
1
2ρ

2R′v′ + (ρ2V + 1
2 l(l + 1))Rvdρ+ 1

2ρ
2R′(a)v(a) = ε

∫
ρ2Rvdρ

We usually want to have the boundary term 1
2ρ

2R′(a)v(a) equal to zero. This is equivalent to either letting R′(a) = 0
(we prescribe the zero derivative of the radial wave function at a) or we set v(a) = 0 (which corresponds to zero
Dirichlet condition for R, i.e. setting R(a) = 0).

We can also write all the formulas using the Dirac notation:

1 =

∫
dρρ2 |ρ〉 〈ρ|

〈ρ|ρ′〉 =
δ(ρ− ρ′)

ρ2

〈ρ|R〉 = R(ρ)

〈ρ|Ĥ|R〉 =
1

ρ2
(− 1

2ρ
2R′)′ + (V + 1

2

l(l + 1)

ρ2
)R

Ĥ |R〉 = E |R〉

Then normalization is:

〈R|R〉 =

∫
dρρ2 〈R|ρ〉 〈ρ|R〉 =

∫
dρρ2R2(ρ)

The operator Ĥ can be written as:

〈ρ|Ĥ|ρ′〉 = 〈ρ|ρ′〉
(
− 1

2

1

ρ2

d

dρ

(
ρ2 d

dρ

)
+ (V + 1

2

l(l + 1)

ρ2
)

)
so to recover the above formula, we do:

〈ρ|Ĥ|R〉 =

∫
dρ′ρ′2 〈ρ|Ĥ|ρ′〉 〈ρ′|R〉 =

=

∫
dρ′ρ′2

δ(ρ− ρ′)
ρ2

(
− 1

2

1

ρ2

d

dρ

(
ρ2 d

dρ

)
+ (V + 1

2

l(l + 1)

ρ2
)

)
R(ρ′) =

1

ρ2
(− 1

2ρ
2R′)′ + (V + 1

2

l(l + 1)

ρ2
)R

Operator Ĥ is symmetric, because: ∫
f

1

ρ2
(ρ2g′)′ρ2dρ =

∫
1

ρ2
(ρ2f ′)′gρ2dρ

The weak formulation is:

〈v|H|R〉 = E 〈v|R〉∫
dρρ2 〈v|ρ〉 〈ρ|H|R〉 = E

∫
dρρ2 〈v|ρ〉 〈ρ|R〉∫

dρρ2v(ρ)

(
1

ρ2
(− 1

2ρ
2R′)′ + (V + 1

2

l(l + 1)

ρ2
)R

)
= E

∫
dρρ2v(ρ)R(ρ)

and we obtain the FE formulation by expanding |R〉 =
∑
j Rj |j〉 (note that the basis |j〉 is not orthogonal, so in

particular
∑
j |j〉 〈j| 6= 1): ∑

j

〈i|H|j〉Rj = E
∑
j

〈i|j〉Rj
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This is a generalized eigenvalue problem. In the special case of an orthonormal basis, 〈i|j〉 = δij (which FE is not),
we get: ∑

j

〈i|H|j〉Rj = Ri

Ri = 〈i|R〉

Which is an eigenvalue problem.

6.7.3 Variational Formulation of the Dirac equation

The QED Lagrangian density is

L = ψ̄(ih̄cγµDµ −mc2)ψ − 1

4
FµνF

µν

where:

Dµ = ∂µ +
i

h̄
eAµ

Fµν = ∂µAν − ∂νAµ

We will treat the fields as classical fields, so we get the classical wave Dirac equation, after plugging this Lagrangian
into the Euler-Lagrange equation of motion:

(ih̄cγµDµ −mc2)ψ = 0

∂νF
νµ = −ecψ̄γµψ

Notice that the Lagrangian happens to be zero for the solution of Dirac equation (e.g. the extremum of the action).
This has nothing to do with the variational principle itself, it’s just a coincindence.

In this section we are only interested in the Dirac equation, so we write the Lagrangian as:

L = ψ̄(ih̄cγµDµ −mc2)ψ =

= ψ†γ0(ih̄cγµDµ −mc2)ψ =

= ψ†γ0(ih̄cγ0(∂0 +
i

h̄
eA0) + icγi(∂i +

i

h̄
eAi)−mc2)ψ =

= ψ†(ih̄c∂0 + ih̄cγ0γi∂i − γ0mc2 − ceA0 − ceγ0γiAi)ψ =

= ψ†(ih̄
∂

∂t
+ cαipi − βmc2 − ceA0 − ceαiAi)ψ =

= −ψ†(−ih̄ ∂
∂t

+ cαi(−pi + eAi) + βmc2 + ceA0)ψ =

= −ψ†(−ih̄ ∂
∂t

+ cα · (p− eA) + βmc2 + V )ψ

where we introduced the potential by V = ceA0. We also could have done the same manipulation to the dirac equation
itself and we would get the same expression:

(−ih̄ ∂
∂t

+ cα · (p− eA) + βmc2 + V )ψ = 0

The corresponding eigenvalue problem is:

(cα · (p− eA) + βmc2 + V )ψ = Wψ
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6.7.4 Radial Dirac equation

As for the Schrödinger equation, there are two ways to obtain the radial Dirac equation. Either from the Lagrangian,
or from the equation itself.

From the Equation

The manipulations are well known, one starts by writing the Dirac spinors using the spin angular functions and radial
components P and Q:

ψ =

(
P
ρ χ

j3
κ

iQρ χ
j3
−κ

)
ψ† =

(
P
ρ χ

j3
κ −iQρ χ

j3
−κ

)
and putting this into the Dirac equation one obtains: (

−h̄c
(

d
dρ −

κ
ρ

)
Q+ (V +mc2 −W )P

)
0

0
(
h̄c
(

d
dρ + κ

ρ

)
P + (V −mc2 −W )Q

) ( 1
ρχ

j3
κ

i 1
ρχ

j3
−κ

)
= 0

So one obtains the following radial equations:

−h̄c
(

d

dρ
− κ

ρ

)
Q+ (V +mc2 −W )P = 0

h̄c

(
d

dρ
+
κ

ρ

)
P + (V −mc2 −W )Q = 0

From the Lagrangian

We can reuse the calculations from the previous sections, because the Lagrangian happens to be zero for the solution
of the Dirac equation:

L = ψ̄(ih̄cγµDµ −mc2)ψ =

= −ψ†(−ih̄ ∂
∂t

+ cα · (p− eA) + βmc2 + V )ψ =

=
(

P
ρ χ

j3
κ −iQρ χ

j3
−κ

) (
−h̄c

(
d
dρ −

κ
ρ

)
Q+ (V +mc2)P

)
0

0
(
h̄c
(

d
dρ + κ

ρ

)
P + (V −mc2)Q

) ( 1
ρχ

j3
κ

i 1
ρχ

j3
−κ

)
=

=
1

ρ2
P

(
−h̄c

(
d

dρ
− κ

ρ

)
Q+ (V +mc2)P

)
χj3κ χ

j3
κ +

1

ρ2
Q

(
h̄c

(
d

dρ
+
κ

ρ

)
P + (V −mc2)Q

)
χj3−κχ

j3
−κ

We can now write the action:

S =

∫
L ρ2 dρdΩ

the spin angular functions integrate to 1: ∫
χj3κ χ

j3
κ dΩ = 1∫

χj3−κχ
j3
−κdΩ = 1
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the ρ2 cancels out and we get:

S[P,Q] =

∫
P

(
−h̄c

(
d

dρ
− κ

ρ

)
Q+ (V +mc2)P

)
+Q

(
h̄c

(
d

dρ
+
κ

ρ

)
P + (V −mc2)Q

)
dρ =

=

∫
−h̄c(PQ′ −QP ′) + h̄c

2κ

ρ
PQ+ V (P 2 +Q2) +mc2(P 2 −Q2)dρ

the normalization condition is:

N =

∫
P 2 +Q2dρ− 1 = 0

and we can variate the action, we also shift the energy W = ε+mc2:

0 = δ(S −WN) = δ(S − εN −mc2N)

which effectively adds −mc2(P 2 +Q2) into the Lagrangian, which changes the term mc2(P 2−Q2) into −2mc2Q2.
We can now variate the (constrained) action:

0 = δ

∫
−h̄c(PQ′ −QP ′) + h̄c

2κ

ρ
PQ+ V (P 2 +Q2)− 2mc2Q2dρ =

= 2

∫ (
−h̄c((δP )Q′ − P ′δQ) + h̄c

κ

ρ
((δP )Q+ PδQ)) + (PδP +QδQ)V − 2mc2QδQ− ε(PδP +QδQ)

)
dρ

+[PδQ−QδP ]R0 =

= 2

∫
δP

(
−h̄cQ′ + h̄c

κ

ρ
Q+ PV − εP

)
+ δQ

(
h̄cP ′ + h̄c

κ

ρ
P +QV − 2mc2Q− εQ

)
dρ+ [PδQ−QδP ]R0 =

which gives the two radial equations:

−h̄cQ′ + h̄c
κ

ρ
Q+ PV = εP

h̄cP ′ + h̄c
κ

ρ
P +QV − 2mc2Q = εQ

Weak Formulation

The weak formulation can be obtained by substituting δP → v1 and δQ → v2 into the action above (and separating
the integrals) and omitting the the boundary term:∫

−h̄cQ′v1 + h̄c
κ

ρ
Qv1 + PV v1dρ = ε

∫
Pv1dρ∫

h̄cP ′v2 + h̄c
κ

ρ
Pv2 +QV v2 − 2mc2Qv2dρ = ε

∫
Qv2dρ

We can also start from the radial equations themselves to get the same result. If we start from the equations themselves
(which is the most elementary approach), there are no boundary terms (because we didn’t integrate by parts). We can
separate the integrals according to the matrix elements that they contribute to:∫

PV v1dρ+

∫
−h̄cQ′v1 + h̄c

κ

ρ
Qv1dρ = ε

∫
Pv1dρ∫

h̄cP ′v2 + h̄c
κ

ρ
Pv2 +

∫
(V − 2mc2)Qv2dρ = ε

∫
Qv2dρ

To show that this problem generates a symmetric matrix, it is helpful to write the radial equations in the following
form:

Ĥ |P,Q〉 = ε |P,Q〉
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where:

|P,Q〉 =

(
P (ρ)
Q(ρ)

)

Ĥ =

 V (ρ) h̄c
(
− d

dρ + κ
ρ

)
h̄c
(

d
dρ + κ

ρ

)
V (ρ)− 2mc2


the operator Ĥ is Hermitean (Ĥ† = Ĥ), because

(
− d

dρ

)†
= d

dρ :∫
f

d

dρ
gdρ =

∫ (
− d

dρ

)
fgdρ

and all the other quantities are just scalars.

Stricly speaking, the exact Dirac notation (that is coordinate/representation independent) would be the following (no-
tice the missing ρ2 in the completeness relation, which is different to the radial Schrödinger equation):

Ĥ |P,Q〉 = ε |P,Q〉

1 =

∫
dρ |ρ〉 〈ρ|

〈ρ|ρ′〉 = δ(ρ− ρ′)∫
〈ρ|Ĥ|ρ′〉 〈ρ′|P,Q〉dρ′ = ε 〈ρ|P,Q〉

〈ρ|P,Q〉 =

(
P (ρ)
Q(ρ)

)

〈ρ|Ĥ|ρ′〉 = δ(ρ− ρ′)

 V (ρ) h̄c
(
− d

dρ + κ
ρ

)
h̄c
(

d
dρ + κ

ρ

)
V (ρ)− 2mc2


The normalization is:

〈P,Q|P,Q〉 =

∫
dρ 〈P,Q|ρ〉 〈ρ|P,Q〉 =

∫
dρ(P 2 +Q2) = 1

The weak formulation is:

〈v|Ĥ|P,Q〉 = ε 〈v|P,Q〉

where the test function |v〉 is one of:

|v〉 =


|v1〉

(
1

0

)

|v2〉

(
0

1

)
The FE formulation is then obtained by expanding |P,Q〉 =

∑
k qk |k〉:∑

l

〈k|Ĥ|l〉 ql = ε
∑
l

〈k|l〉 ql

The basis |k〉 can be for example the FE basis, some spline basis set, or gaussians. The basis has actually 2n base
functions and it enumerates each equation like this:

|k〉 =


|i〉

(
1

0

)
for i = k < n

|i〉

(
0

1

)
for i = k >= n
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So at the end of the day, the 〈k|Ĥ|l〉 matrix looks like this:

〈k|Ĥ|l〉 =

(
〈i|V (r)|j〉 h̄c 〈i| − d

dρ + κ
ρ |j〉

h̄c 〈i| d
dρ + κ

ρ |j〉 〈i|V (r)− 2mc2|j〉

)

The matrix is 2n× 2n, composed of those 4 matrices n× n. The 〈k|l〉 matrix looks like this:

〈k|l〉 =

(
〈i|j〉 0

0 〈i|j〉

)
We can also write the matrix elements explicitly. Let |i〉 = Bi(ρ), then:

〈i|j〉 =

∫
BiBj dρ

〈i|V |j〉 =

∫
BiV Bj dρ

〈i|V − 2mc2|j〉 =

∫
Bi(V − 2mc2)Bj dρ

h̄c 〈i| d

dρ
+
κ

ρ
|j〉 = h̄c

∫
BiB

′
j +Bi

κ

ρ
Bj dρ

h̄c 〈i| − d

dρ
+
κ

ρ
|j〉 = h̄c

∫
−BiB′j +Bi

κ

ρ
Bj dρ
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compressible

Euler equations, 88
computation
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contour integration, 6
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cylindrical, 31
covariant

differentiation, 24
integration, 30

curvature, 26
cylindrical

coordinates, 31

D
delta function, 11
derivation

magnetohydrodynamics, 84
derivative

Lie, 27
differential geometry, 23
differentiation

covariant, 24
dimensional analysis, 141
dirac notation, 20
divergence

operator, 29

E
Electroweak Standard Model, 105
equation

Klein-Gordon, 131
equations

compressible Euler, 88
Euler

equations, compressible, 88
evolution

operator, 118

F
FEM

magnetohydrodynamics, 85
Fermi-Walker

transport, 26
fermions, 120
Feynman rules, 125
fluid dynamics, 77, 88
functional derivative, 16

G
gauge, 108
geodesics, 26
Group

Lorentz, 59
GWS

Lagrangian, 109

H
Hagen-Poiseuille

Law, 83
Higgs boson, 106
homogeneous functions, 22

I
implicit surface

integration, 5
integration, 3

covariant, 30
implicit surface, 5
line, 4
orthogonal coordinates, 5
surface, 4, 5
volume, 4

J
Jordan’s Lemma, 8

K
Killing

vector, 29
Klein-Gordon

equation, 131
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L
Lagrangian

GWS, 109
laplace

operator, 30
Law

Hagen-Poiseuille, 83
leptons, 107
Lie

derivative, 27
line

integration, 4
Lorentz

Group, 59
low energy theories, 129

M
magnetohydrodynamics, 83

derivation, 84
FEM, 85

manifolds, 23
metric, 27
MHD, 83
multipole expansion, 144

N
newtonian physics, 45

O
O(4) Group, 63
operator

divergence, 29
evolution, 118
laplace, 30

orthogonal coordinates
integration, 5

P
parallel

transport, 25
particle mass, 110
perturbation theory, 133
proper time, 65

Q
QED, 130
QFT, 104

tensors, 142
QM, 104
quantum electrodynamics, 130
quantum field theory, 104
quantum mechanics, 104, 129
quarks, 110

R
residue

computation, 7
residue theorem, 6
rotating disk, 34

S
S-matrix, 118
scalar, 23
scattering theory, 136
spherical harmonics, 19
Standard Model, 105
stress-energy

tensor, 77
surface

integration, 4, 5
surface integrals, 3

T
tensor, 23

stress-energy, 77
tensors

QFT, 142
transport

Fermi-Walker, 26
parallel, 25

V
variation, 16
vector, 23

Killing, 29
vector bosons, 120
volume

integration, 4
volume integrals, 3

W
Wick Theorem, 121

Y
Yukawa terms, 107
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