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CHAPTER
ONE

INTRODUCTION

Theoretical Physics Reference is an attempt to derive all theoretical physics equations from the general and special
relativity and the standard model of particle physics.

The goals are:
 All calculations are very explicit, with no intermediate steps left out.

« Start from the most general (and correct) physical theories (general relativity or standard model) and derive the
specialized equations from them (e.g. the Schrédinger equation).

* Math is developed in the math section (not in the physics section).

* Theory should be presented as short and as explicitly as possible. Then there should be arbitrary number of
examples, to show how the theory is used.

* There should be just one notation used throughout the book.

This is a work in progress and some chapters don’t conform to the above goals yet. Usually first some derivation is
written, as we understood it, then the mathematical tools are extracted and put into the math section, and the rest is fit
where it belongs. Sometimes we don’t understand some parts, then those are currently left there as they are.
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CHAPTER
TWO

MATHEMATICS

2.1 Integration

This chapter doesn’t assume any knowledge about differential geometry. The most versatile way to do integration over

manifolds is explained in the differential geometry section.

2.1.1 General Case

We want to integrate a function f over a k-manifold in R", parametrized as:

o1(t1,ta, - -
@2(751,1‘52,. ..

gOZRk—>Rn (p(tl,tg,...,tk):

@n(tl,tg, P

then the integral of f(xz1, zo,...,xy,) over ¢ is:

atk)

/ f(ﬁEl,SCQ, e 7-73n) ds = f(go(tl,tg, . 7tk))v detGdtldfg s dtk
M R"

where G is called a Gram matrix and J is a Jacobian:

0oy Oy
G)ij =TT = Jixdr; = =
( )J ( )J kkj ot; 3tj
99  Op . Op
Otl 8t2 atk
Do . . . .
Ji-: =
()J atj

The idea behind this comes from the fact that the volume of the k-dimensional parallelepiped spanned by the vectors

e e

oty Oty
is given by

V =vdetJTJ

where J is an n x k matrix having those vectors as its column vectors.
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Example

Let’s integrate a function f(z,y, z) over the surface of a sphere in 3D (e.g. kK = 2 and n = 3):

rsin 6 cos ¢

0(0,¢) = | rsinfsin o
r cos 0

—rsinfsing rcosfcos ¢
J=| rsinfcos¢ rcosfsing
0 —rsind

. . . —rsinfsing rcosfcos ¢ . 9
—7rsin # sin 7 sin 0 cos 0 . . r?sin’g 0
G=J7= (rcos@cos ¢¢ TCOS@Sini —7rsin 9) rsinfcosg reosfsing | = ( 0 7"2)
0 —rsinf
det G = rtsin® 0

Vdet G = r2sin 6

/ f(z,y,2)dS = f(rsinf cos ¢, rsin @ sin ¢, 7 cos §) 72 sin § df do =
M R»

T 2m
= / do d¢ f(rsin @ cos ¢, rsin O sin ¢, r cos §) 2 sin @
0 0

Let’s say we want to calculate the surface area of a sphere, so we set f(z,y,z) = 1 and get:

T 27 T
/ ds = / d9/ do r’sinf = 2777’2/ dfsin 6 = 4mr?
M 0 0 0

2.1.2 Special Cases
k=n

det G = det JRJ = (det J)?
dS = |det J| dt; dty - - - dty,

_ dpq 2 deo ? _ d<p2
detGdet<<dt) +<dt Lo ) = o

dy
ds = |=X| dt

4 Chapter 2. Mathematics
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det G = det J®J =
=det(---)? +det(--- )2 +---+det(...)* =

o do .. O 2
t1 Oto Oty €1
: Sl ey
= |det . . . . . = |wso‘2
€en

ds = ‘UJ@| dtl dtQ . 'dtk

w,, is a generalization of a vector cross product. The det(- - - ) symbol means a determinant of a matrix with one row
removed (first term in the sum has first row removed, second term has second row removed, etc.).

k=2,n=3
detG = | 2% X%Q
10t Oty
| op 0
ds = Btl X 8152 dtl dt2
y =1(x, 2)

B of 2 of 2
e =1+ () (2)

- of 2 of 2
dS_\/1+<8;v) +(6z> drdz

in general for x; = f(z1,22,...,2,) We get:
arN> [or\’
detG =1 — —
¢ + <6$1> + (63:2 *

2 2
ds = 1+ ﬁ + ﬁ +---dxydxs - -dz,
8951 8182

The “x;” term is missing in the sums above.

Implicit Surface

For a surface given explicitly by

F(zy,z9,...;x,) =0

we get:

2.1. Integration 5
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Orthogonal Coordinates

If the coordinate vectors are orthogonal to each other:

dp Oy _ ..
aiti aitz =0 for ¢ 7é ]
we get:
| 9¢ || 0 e
s = Ot || Ota Oty diy -~ diy

2.1.3 Motivation

Let the k-dimensional parallelepiped P be spanned by the vectors

Oy e
R

and let J is n x k matrix having these vectors as its column vectors. Then the area of P is
V =vdetJTJ

so the definition of the integral over a manifold is just approximating the surface by infinitesimal parallelepipeds and
integrating over them.

2.1.4 Example

Let’s calculate the total distance traveled by a body in 1D, whose position is given by s(t):

2
l:/ds:/ ds
Y t1 de
ds l

t’ t

ds 2 |ds

iy I Zldt+--- =
+/t/ ’dt + +/t

t/
_/f,l dt o | dE

= |5(tl) —s(t1)| + |s(t”) — s(t')‘ oo s(tg) — S(t”//"')|

dt =

dt =

where ', t”, ... are all the points at which |$’ = 0, so each of the integrals in the above sum has either positive or
negative integrand.

2.2 Residue Theorem

The Residue Theorem says that a contour integral of an analytic function f over a closed curve vy (loop) is equal to the
sum of residues Res,, f(z) of the function at all singularities zj, inside the loop:

/f(z)dz = QFiZZPieS f(z)
8! PR

Residue Res,, f(z) is defined as the contour integral around z, divided by 27ri:

Res f(z) = ! /| _ f(z)dz

z2=2zq 271

6 Chapter 2. Mathematics
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and it is equal to the coefficient of ﬁ in the Laurent series of f(z) around the point zy, as can be easily calculated:

1 (oo}
RefG)=gg [ fee=gy [ 3 al-wris
|z—z0|=¢€ |z—z0|=¢€ n=-oe
= Oog ni / (z — zp)"dz = ‘X’g CnOp -1 =C_1
< 2mi < ’
n=—oo ‘Z*ZO‘:E n=—oo

where we used the result of the following integral (we integrate over the curve z = 2y + ee’?, 0 < p < 2T, so
dz = iee’?dy):

n+1

/eiw(n+1)d<p —
0

s

2m
1 n 1 i n; _ip €
— (z — z0) dz:% (20 + €€'? — zg)"iee'Pdp =
0

entl |:€i(,a(n+1) } 27

o WO =0 fOrn#fl

2m = 6717—1
= [dp=1 forn=-1
0

2.2.1 Computation of Residues

One has to calculate the ¢_ coefficient in the Laurent series. One way to do that is to write f(z) as:

H(z)

(z — z0)™

f(z) =

where H (z) is analytic in the vicinity of zo, e.g. f(z) has a pole of order m at zy. Then:

Res f(z) =c_1 = ! ™ H{(z)

zZ=2z0 (m — 1)' dZm 2=20

in particular for m = 1:

Res f(z) = H(zp) = lim (2 — 20) f(2)

Z=2Zz0 Z—r20

form = 2:

Res f(z) = H'(z0) = lim - [(z — z0)2(2)]

z2=z¢ zZ—20 dZ

f has a pole of order 1 at zg, g is analytic at zg:

Res f(2)9(2) = lim (z — 20) f(2)g(2) = g(z0) lim (z — 20) f(2) = g(20) Res f(2)

Z=z0 Z—Z20 Z—20 Z=z0

f(z0) =0, but f'(29) # 0 and g is analytic at z¢:

‘M— im2720: Z im S :g(zo)
Res 7(2) = 9(20) lim. 7(2) 9(z0) lim ) — f(z0)  f'(z0)

2.2. Residue Theorem 7
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2.2.2 Useful Formulas

Jordan’s Lemma

For estimating integrals over semicircles {2 (z = Ret, 0 < ¢ < ), we can use the following estimates:

/Qg(z)dz

’/ e g(2)dz
Q

< nRmax]g(z)|

< —
max|g(z)| fora >0

(In the first case the integration path can be extended to the full circle if needed (0 < ¢ < 27), in the second case the
semicircle is the maximum path. Also if & < 0, we need to integrate over the lower semicircle.) These formulas can
be used to make sure the integral over the semicircle goes to zero as R — oo. Intuitively speaking, in the first case
g(z) must vanish faster than % (e.g. 77 is ok), in the second case it’s enough if g(z) just goes to 0 (no matter how

fast).

The estimates can be proved easily:

/Q g(2)dz

and

/eng(z)dz / emRewg(Rew)iRewdw‘ <

Q 0

< [ e jg(ret)| Ry < Rugxlg(a)] [ e edp <
0 0

s
< = max|g(2)|

where we use the following useful estimate for the integral (valid for o > 0):

ﬂ_ - _oRZ w/2
/ e~ oftsineq, < 2/2 e~ BEedp =2 e ﬂ: =
0 0 *OZR*
™ 1o
2 —aR T —aR ™
= —_ 1 = —_— 1 — o < —_
—aR2 [e ] aR( e aR

Other

/ g(Rei‘”)iRe“"dw’ S/ |9(Re™)| Rdyp < ngXlg(Z)l/ dp = mRmax|g(2)
0 0 0

Sometimes it is useful to integrate over the arc z = zg + €e'¥, o < ¢ < o + a, and let € — 0 at the end. If the
function is analytic, the result is 0. If the function has a pole of order n > 1, the result is infinity, unless it’s a full
circle (in which case the result is 0). The remaining case is if the function has a pole of order one, e.g. it can be written

(H (z) is analytic at zp):

Then:
H pota H ip )
/ F(2)de = / HE) o\ / Hzo +ee®) ivqy, -
Q Q ©

z— 20 ) 20 + €€t — zg

Z=Z0

0] %o

wota ) Yot
= / H(zp + ee*¥)idp — / H(zp)idp = iaH (2zp) = i Res f(z)
©

8 Chapter 2

. Mathematics
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2.2.3 Complex Substitution

When substituting in integrals, as long as we just substitute for real functions, we use the regular substitution theorem,
e.g. t =y + 1 (f(x) can be a complex function):

/ : fayts = [ O; F(y+1)dy

if, on the other hand, we substitute for complex functions, e.g. = iy:

/Z flx)dx = /Zioo fliy)idy — /700 F(iy)idy

1e9) oo

then the first two integrals in the left hand side are equal, however the integral on the right hand side is over a different
integration path and we need to use the Residue Theorem to relate those integrals, e.g. in general the two integrals on
the LHS and the integral on the RHS are not equal. However the idea is that the integral after the substitution (and
changing the limits, e.g. the integration path) is easier to evaluate, so the substitution guides us which integration path
to choose for the Residue Theorem.

2.3 Fourier Transform

The Fourier transform is:
Flf@) = fw) = [ 1@ s
1

PR = f0) = o [ " Fw)etir du

~or oo

To show that it works:

FUFf(2) = — / i V T fayeien dx] SCIEE { / T pae e ! | et du =

2m —o0 —o0

2 J_ 0
:/jO £ Bﬂ /oo eiw<H’>dw] dx'/z F(a)o(x — o) de’ = f()

o0 — 00

2.4 Laplace Transform

Laplace transform of f(x) is:
L — * —sT
@)= [ e s
_ 1 o+ic0 _ _
LR = g [ F)etds =3 Res(F(5)e™)

2% S o—ioo

The contour integration is over the vertical line o + iw and o is chosen large enough so that all residues are to the
left of the line (that’s because the Laplace transform f(s) is only defined for s larger than the residues, so we have to

2.3. Fourier Transform 9
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integrate in this range as well). It can be shown that the integral over the left semicircle goes to zero:

/Q e*g(s)ds

< Rugxlg())e” [

37

2 ip . .
/ elothe )“’g(a—i— Re'#)iRe'?dp| <

2

m‘;‘“

zReW

dp =

[SE]

”‘::

= Rmax|g / etficoseqy =
2

= Rugxlg(a)eo [ e =
0
oxr

™
<

max|g(2)|

so the complex integral is equal to the sum of all residues of f(s)e*” in the complex plane.

To show that it works:

o+ioco o+i00 o)
L7 'Lif(z)] = 5 /a - {/ flx)e™™® dx] ds = % - [/0 f(z")e ™ dx'] e’ ds =
- /000 f(a) [271'1 Ait:o s(z— Z)ds} da’ —/ f(@o(x —2")da’ = f(x)

1 o+i00 1 o+ioco L 1 o ) o
- s(w z’) ds = — es(w z’) ds = — e(UJrzw)(a: z’) idw =
2mi 271 273

where we used:

g—100 o—100

ea(mfz')

= / @@= qu = @5 (z — o) = §(x — 2')

2T

— 00

and it can be derived from the Fourier transform by transforming a function U (z):

Ulz) = f(z)e=?® forxz >0
0 forz <0

and making a substitution s = ¢ + iw:

LIf()] = F(s) = FU@)] = U(w) = /jo Ula)e " dr = / flae e e = [ foje s
() = f@) = Ul@)er™ = F W)l Uf(o +iw)e]

1 o+i00

/OO flo +iw)e®e™?® dw = — f(s)e’* ds = Z Res (f(s)e*®)

2mi o—100

Where the bar (f) means the Laplace transform and tilde (U ) means the Fourier transform.

2.5 Polar and Spherical Coordinates

Polar coordinates (radial, azimuth) (r, ¢) are defined by

xr = rcos¢

= rsing

10 Chapter 2. Mathematics
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Spherical coordinates (radial, zenith, azimuth) (p, 8, ¢):

x = psinfcosq¢
y = psinfsing
z = pcost

Note: this meaning of (6, ¢) is mostly used in the USA and in many books. In Europe people usually use different
symbols, like (¢, 0), (9, ) and others.

2.6 Argument function, atan2

Argument function arg(z) is any ¢ such that
2z =re'?

Obviously arg(z) is unique up to any integer multiple of 27r. By taking the principal value of the arg(z) function, e.g.
fixing arg(z) to the interval (—, 7], we get the Arg(z) function:

- <Argz <
then arg z = Argz + 2mn, where n = 0, +1, £2,.... We can then use the following formula to easily calculate Argz
for any z = x + 1y (exceptz = y = 0, i.e. z = 0):

T y=0;2<0;
Arg(z +iy) = {2 atan———2——  otherwise

2ty
Finally we define atan2(y, ) as:
T y=0;2 <0

2atan——%4—=— otherwise
Va2ty?te

The angle ¢ = atan2(y, z) is the angle of the point (x, y) on the unit circle (assuming the usual conventions), and it
works for all quadrants (¢ = atan(y, ) only works for the first and fourth quadrant, where atan(y, z) = atan2(y, x),
but in the second and third qudrant, atan(y, «) gives the wrong angles, while atan2(y, ) gives the correct angles). So
in particular:

atan2(y, x) = Arg(x + iy) = {

0
atan2(0,1) = 2atan————=-—=0
©.1) V12402 +1

atan2(0,—1) =7

1 m
atan2(1,0) = 2atan————— = 2atanl = —
(1,0) V0241240 2
—1 m
atan2(—1,0) = 2atan——— = —2atanl = ——
(=L0) V02 +12+0 2

This convention (atan2(y, x)) is used for example in Python, C or Fortran. Some people might interchange = with y
in the definition (i.e. atan2(x,y) = Arg(y + ix)), but it is not very common.

The following useful relations hold:

sin atan2(y, x) = N exceptz =y =0

T

cosatan2(y, x) = exceptz =y =10

tan atan2(y, x) = y forz # 0
x
atan2(ky, kx) = atan2(y, x) for k > 0

2.6. Argument function, atan2 11
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We now prove them. The following works for all z, y except for x = y = 0O:

sin y=0;2 <0
sinatan2(y,x) = < . . =
2 sin (2 atan&) otherwise
{0 y=0;2 <0
= y . =
T otherwise

Y

T y:0;x<0;: y
Y

T otherwise \x2 + g2

CoS T y =0z <0
cosatan2(y, z) = cos (2 atany> otherwise
2 +y?ta
1 y=0;2 <O0;
= { \/;Ty? otherwise -

X — . .
e y=0;2 <0 B z
=< Ve =

T otherwise v 12 + 92

Tangent is infinite for +Z, which corresponds to « = 0, so the following works for all 2 # 0:

tan y=0;z <0;

tan | 2 atan——4—— otherwise
$2 +y2 +$

tan atan2(y, z) =

|

In the above, we used the following double angle formulas:

4 otherwise

{0 y=0;z<0;

y:0;x<0;7g

8l 8

otherwise T

. 2tanx
311123::72
1+tan®x
1—tan?x
COS2$:72
1+ tan®x

2tanx
tan2x:72
1 —tan®x

12
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to simplify the following expressions:

2 tan atan——L——
sin (2 atan Y ) = =
SR 2 v
2 +y2 4z 1+ tan atanmﬂ
y
QW Qy( x2—|—y2+x)
= 5 = 2 -
1+ —=— ( "’32+y2+x) v
x24y2+x
y< x2+y2+l‘) y( :v2+y2+w)
22 + o2 + /22 + 92 Va2 42 <\/x2+y2—|—x)
- _ ¥
1 — tan? atan——2L——
cos <2 atan i ) = Vet =
S 2 v
2 4+y2 4 1+ tan atan\/mﬂ

2
2
o —y
1 ( w2+y2+w> ( x2+y2+x) —y2

2 2
1+(y> ( $2+y2+x) +y?

24y2+zx
x( x2+y2—|—x) x( m2—|—y2+x)

N V2 +y? <\/x2+y2+x)
X

2 tan atan ——L——
tan (2 atan Y ) = Bivite
2 2 _ 2 y
e + Y + x 1 tan“ atan pE
y
2,/x2+y2+z 23/( % +y? +I)

= s = > =
1— y ( 2 +y?+ x) — g2
2 4y? o

(/T )

a:( m2+y2+x) x

Finally, for all £ > 0 we get:

(ky. k) = Arg(ke + k) = 41 y =0z <0;
atan2 Y,kx) = Arg x + 1 y) = " . _
2 atanm otherwise
T y=0;2<0; .
~ )2atan——%—— otherwise Arg(z + iy) = atan2(y, z)
z2+y2 4

2.6. Argument function, atan2

13
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An example of an application:

Asinx + Bcosx = \/m (\/ﬁ sinx + \/%cosa) =
= \/m(cosésinz +sindcosx) = \/msin(x +0) =
= \/msin(x + atan2(B, A))
where
B A
VT B VR D

0 = atan2 ( ) = atan2(B, A)

2.7 Delta Function

Delta function 6(x) is defined such that this relation holds:

[ @it - e = 10 @1
No such function exists, but one can find many sequences “converging” to a delta function:
ali_)ngo 0o () = 6(2) (2.2)
more precisely:
Oéh_}rgo f(x)ds(x)dx = / flx OLh_}n;() Oa(x)dz = f(1) (2.3)

one example of such a sequence is:

0a(x) = wilx sin(ax)

It’s clear that (2.3) holds for any well behaved function f(z). Some mathematicians like to say that it’s incorrect to use
such a notation when in fact the integral (2.1) doesn’t “exist”, but we will not follow their approach, because it is not
important if something “exists” or not, but rather if it is clear what we mean by our notation: (2.1) is a shorthand for
(2.3) and (2.2) gets a mathematically rigorous meaning when you integrate both sides and use (2.1) to arrive at (2.3).
Thus one uses the relations (2.1), (2.2), (2.3) to derive all properties of the delta function.

Let’s give an example. Let ¥ be the unit vector in 3D and we can label it using spherical coordinates # = (6, ¢). We
can also express it in cartesian coordinates as (6, ¢) = (cos ¢ sin 0, sin ¢ sin 6, cos 6).

/ 5(F — #)f(#) di (2.4)
Expressing f(¥) = f(6, ¢) as a function of § and ¢ we have
o) =[50~ )66~ 6)5(6,0) a0 25)

Expressing (2.4) in spherical coordinates we get
f@,¢") = /5(f — )£ (0, ¢)sinfdOd¢
and comparing to (2.5) we finally get
O(F —#) = 30 - 0)5(¢ - ¢')
In exactly the same manner we get
S(r—r1')=06(F— f.,)5(,0p—2,0/)

See also (2.6) for an example of how to deal with more complex expressions involving the delta function like §2(z).

14 Chapter 2. Mathematics
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2.8 Distributions

Some mathematicians like to use distributions and a mathematical notation for that, which I think is making things less
clear, but nevertheless it’s important to understand it too, so the notation is explained in this section, but I discourage
to use it — I suggest to only use the physical notation as explained below. The math notation below is put into quotation
marks, so that it’s not confused with the physical notation.

The distribution is a functional and each function f () can be identified with a distribution "T';" that it generates using
this definition (¢ (x) is a test function):

"Tr((x))" = / f@)p@)dz = "f(p(@)" = "(f(2), ()"

besides that, one can also define distributions that can’t be identified with regular functions, one example is a delta
distribution (Dirac delta function):
"d(p(x))" = ¢ / §(x

The last integral is not used in mathematics, in physics on the other hand, the first expressions ("d(¢(x))") is not used,
so 0(x) always means that you have to integrate it, as explained in the previous section, so it behaves like a regular
function (except that such a function doesn’t exist and the precise mathematical meaning is only after you integrate it,
or through the identification above with distributions).

One then defines common operations via acting on the generating function, then observes the pattern and defines it for
all distributions. For example differentiation:

d
T =" Tpe) = [ fodo= - [ g =1y
SO:
d
n_— " — n_T I\ n
L) (¥")
Multiplication:
"gTs(p)" = "Tyr () / gfedr ="Tr(g¢)
SO:

Fourier transform:

"FTy(p)" = "Trs(o)" = / F(f)pdz =

:/ {/ e_“””f(k)dk] o(z)dx = /f(k) {/ e_“““:go(x)dx] dk = /f(x) {/ e_““”go(k)dk] dz =
Z/fF(w)da?= Ty (Fe)"
$0:
"FT(p)" = "T(Fy)"

But as you can see, the notation is just making things more complex, since it’s enough to just work with the integrals
and forget about the rest. One can then even omit the integrals, with the understanding that they are implicit.

2.8. Distributions 15
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Some more examples:

/ 5(z — zo)p(z)dz = / 5(@)p(e + zo)dz = pla0) = "5(pl + x0))"

Proof of §(—z) = §(x):

/ " S(—a)p(e)dr = — / S y)e(—y)dy = / " b(@)p(—a)dz = "5(p(—2))" = p(0) = "3($(z)" = / " b(@)p(a)da

o0

Proof of zd6(x) = 0:
[ ap@)e@rs = "s(ap(a)) = 0-4(0) =0

Proof of §(cz) = %

[ stenstas - Ny [ (£)ar=s (*” (2) ) o S A PO

2.9 Variations and Functional Derivatives

Functional derivatives are a common source of confusion and especially the notation. The reason is similar to the
delta function — the definition is operational, i.e. it tells you what operations you need to do to get a mathematically
precise formula. The notation below is commonly used in physics and in our opinion it is perfectly precise and exact,
but some mathematicians may not like it.

Let’s have x = (21, x2,...,xy). The function f(x) assigns a number to each x. We define a differential of f as
d h) —
df = —f(x+e¢h) zlimf<x+€) f(x):a-h
de g €0 €
The last equality follows from the fact, that d% f(x+¢h) ’5:0 is a linear function of h. We define % as

_(9of of  Of
a= 0x1’ Oxs’ " Oxn

This also gives a formula for computing %: we set h; = d;;h; and

of d
—g;=a-h= — 0,0,...,1,...,0 -
0x; “ A daf(x+€( ) e
iy fELT it an) = f(@ e, T w)
e—0 c

But this is just the way the partial derivative is usually defined. Every variable can be treated as a function (very simple
one):

€Ty = g(xl, - ,JIN) = 5ijxj
and so we define

16 Chapter 2. Mathematics



Theoretical Physics Reference, Release 0.1

and thus we write h; = dz; and h = dx and

_ 4

df dz;

So dx has two meanings — it’s either h = x — x( (a finite change in the independent variable x) or a differential,
depending on the context. Even mathematicians use this notation.

Functional F[f] assigns a number to each function f(z). The variation is defined as

d h| —
L) = ZFU e = tim Flf + 66] iltigs /a(m)h(x)da:
We define % as
_OF
=55
This also gives a formula for computing %: we set h(y) = 0(x — y) and
) d
Sy = o) = [ ati -y = LFUG) 4w -y)| =
i P W) + 8@z — )] — Flf(y)]
e—0 3

Every function can be treated as a functional (although a very simple one):

f(x) = Glf] = / Fw)s(@ — y)dy

and so we define

_ _ 4 _ 4 , _
1 =061 = ZOUE) +e@] = F(@) +eh@)| =
thus we write h = 0 f and
OF
s0 8 f have two meanings — it’s either h(z) = L (f(z) + eh(x)) ‘s:O (a finite change in the function f) or a variation

of a functional, depending on the context. Some mathematicians don’t like to write d f in the meaning of h(x), they
prefer to write the latter, but it is in fact perfectly fine to use J f, because it is completely analogous to dx.

The correspondence between the finite and infinite dimensional case can be summarized as:

flai) = F[f]
df =0 — OF =0
of oF
or 0 T 5w
f — F
i — f(z)
T = f
) = T

2.9. Variations and Functional Derivatives 17
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More generally, -variation can by applied to any function g which contains the function f(z) being varied, you just
need to replace f by f + eh and apply i to the whole g, for example (here g = J,¢ and f = ¢):

d d
00,6 = TOu(0+ch)| =0y (o4eh) = 0.80

e=0

e=0

This notation allows us a very convinient computation, as shown in the following examples. First, when computing a
variation of some integral, when can interchange § and |-

Flf) = / K(2)f(2)de

6F_5/K i/K(x)(f—i—sh)dx

In the expression 6 (K (x) f(z)) we must understand from the context if we are treating it as a functional of f or K. In
our case it’s a functional of f, so we have §(K f) = Kdf.

A few more examples:

(s;(t) /dt’f(t’)g /dt ") +ed(t—t)g(t) T 9(t)
fS{If((i)) - d%(f(t’) +ed(t—t') . 6t —1t)
SICIL) 2 (50) + <8t — 1)) (S t2) + <6t~ t2) =0 ) a2) + ()00~ 1)
(S;(t)%/dtldth(tl,tg)f(tl)f(tg) = ;/dhdtzK(thtz)W =

(/dt1 (t1,t)f(t1) /dth (t,t2) f(to > /dtg (t,t2) f(t2)

The last equality follows from K (t1,t2) = K (t2,t1) (any antisymmetrical part of a K would not contribute to the
symmetrical integration).

Another example is the derivation of Euler-Lagrange equations for the Lagrangian density £ = £(7,, 0,1,, z"):

oL oL
0=0I= 5/£d4;v“ = /8£d4x“ = | ==6on, + =——6(8,n,) d*z" =
877/) P a(a”,r]p) ( P)
oL oL
—— 0, + =0, (dn,) At =
anp P a(aunp) ( P)

oL oL oL
0 =0 | 57— |9 A4zt + /&, (5 ) d*azt =
87]/} (a(aﬂ?p)) e 3(3u77p) e

oL oL
= = 9, | =——— )| dn,d*z"
/ [877/) <8(8V77p) >} e
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Another example:

5 d
m/ﬁ(x)dx: d—g/(f(a:)+55(x—t))3da:

e=0

- /3(f(:z:) + ed(z — 1))2(x — t)da

- / 3f%(2)d(x — t)dz = 3f(t)

e=0

Some mathematicians would say the above calculation is incorrect, because §%(z — t) is undefined. But that’s not

exactly true, because in case of such problems the above notation automatically implies working with some sequence
8o (z) — §(x) (for example &, (z) = -L sin(ax)) and taking the limit o — oo:

T

° ’ = imi x 2 — ))3de
i ] P = Jim g [+t -0yt

a—oco de

e=0

= lim [ 3(f(2) + da(x —1))*60(x — t)da

a—r00

e=0

::/sfaﬂig&5dz—tﬂm:i/aﬁtwﬂx—ﬂdz:3f%0 (2.6)

As you can see, we got the same result, with the same rigor, but using an obfuscating notation. That’s why such
obvious manipulations with d,, are tacitly implied.

2.10 Spherical Harmonics

20+ 1 (1 —m)! .
Yim (0, ¢) = ;M P (cos 6) e™?

where P/" are associated Legendre polynomials defined by

Are defined by

P ) = (-1)"(1— 2™ S p(a)

and P, are Legendre polynomials defined by the formula

1 d o, .
P(z) = ﬁ@[(ﬂf -1
they also obey the completeness relation
=20+ 1
> 5 P Pu(z) = 8(x — ') 2.7
1=0
The spherical harmonics are ortonormal:
2m ™
/Ylm Y dQ = / / Yim(0,0) Y7,/ (0,¢)sin 0 d0 dd = 0y Onr (2.8)
o Jo
and complete (both in the [-subspace and the whole space):
l
20+1
Yim (0, ¢)> = .
D Yim(0.0)* = = 2.9)

m=—I
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1
sin 0

[ l
SN Vim0,0) Vi (0,6)) = —6(0 — 0)d(6 — ¢') = 3 — )

=0 m=—1

The relation (2.9) is a special case of an addition theorem for spherical harmonics

47

l
D Yim(0: @)Y (0',6) = g Plcos)

m=-—I
where 7 is the angle between the unit vectors given by # = (6, ¢) and ¥/ = (¢, ¢'):

cosy = cosf cos @ +sinfsin @ cos(p — ¢') = - ¥/

2.11 Dirac Notation

(2.10)

@2.11)

The Dirac notation allows a very compact and powerful way of writing equations that describe a function expansion
into a basis, both discrete (e.g. a fourier series expansion) and continuous (e.g. a fourier transform) and related things.

The notation is designed so that it is very easy to remember and it just guides you to write the correct equation.

Let’s have a function f(x). We define

(zlf) = f(z)

@'f) = f@&@)

(@'|z) = 6(2' —2)
/\x) (z|de = 1

The following equation

fl@') = /5(z’ —x)f(z)dx
then becomes

@'|f) = / (a'|2) (] ) d

and thus we can interpret | f) as a vector, |z) as a basis and (x| f) as the coefficients in the basis expansion:

fy=1]f) = / ) (z da | f) = / 12) (2] f) da

That’s all there is to it. Take the above rules as the operational definition of the Dirac notation. It’s like with the
delta function - written alone it doesn’t have any meaning, but there are clear and non-ambiguous rules to convert any
expression with § to an expression which even mathematicians understand (i.e. integrating, applying test functions and
using other relations to get rid of all § symbols in the expression — but the result is usually much more complicated than
the original formula). It’s the same with the ket |f): written alone it doesn’t have any meaning, but you can always
use the above rules to get an expression that make sense to everyone (i.e. attaching any bra to the left and rewriting all
brackets {a|b) with their equivalent expressions) — but it will be more complex and harder to remember and — that is

important — less general.
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Now, let’s look at the spherical harmonics:

Yim () = (£[Im)

/|f> <f\df:/|f> #d0 =1

5(8 — ) = (FI)

on the unit sphere, we have

thus

2w
/ / Yim(0,0) Yy, (0,0)sin0df de = / (I'm/|#) (®]lm) dQ = (I'm/|Im)
and from (2.8) we get
<llm/|lm> = 6’mm’6ll’
now

Zmn )Y (0, ¢') =D (B]tm) (Im|#')

lm

from (2.10) we get

> (®ftm) (Im[¥') = ([¥)

lm

so we have
Z [lm) (Im| =1
lm
so |lm) forms an orthonormal basis. Any function defined on the sphere f(#) can be written using this basis:

lm

where
ﬁm=WMﬁ=/UW 1) do = / (#)(F)d

If we have a function f(r) in 3D, we can write it as a function of p and ¥ and expand only with respect to the variable

r

f(r):f(pr —gpa Zyvlm glm

In Dirac notation we are doing the following: we decompose the space into the angular and radial part

v) = |8) @ lp) = |F) |p)

and write

fle) = (xelf) = & (ol f) = ZYzm ) {lm] (pl f)
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where
(| (plf) = [ (tmle) @1 ol a2 = [ Vi (@f )0

Let’s calculate {p|p)

(r[r’) = (& (plp") [#) = ([F') (plp")

N (xlr) _dlp—p)
(plp") = C:

We must stress that |lm) only acts in the |¥) space (not the |p) space) which means that

(eflm) = (&[ (pltm) = (E[lm) (p| = Yim (F) (p|

and V' |lm) leaves V' |p) intact. Similarly,
Z [lm) (Im| =1
m

is a unity in the |#) space only (i.e. on the unit sphere).

Let’s rewrite the equation (2.11):

> (#fim) (Im]#) =

m

Using the completeness relation (2.7):

> 2 ip) (Ble) = (@)

l

204+ 1
DR = —(Bl=1
l

we can now derive a very important formula true for every function f(# - #'):

20+1

P& = (610 = 30 6 #1R) 2 Rl = 3 (e ey ZE iy =

l ilm

= (#fim) fi (Im|¥')
Im
where
2
fi= B iy = OO T ) iy e = 22 [ pas

or written explicitly

'1)
'1>

Z Z Vi (8) 1Y (%) (2.12)

=0 m=—1
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2.12 Homogeneous functions

A function of several variables f(x1,x2,...) = f(x;) is homogeneous of degree k if
FOay) = A f(x)

By differentiating with respect to A:

Of Awi) o ka
T; o ENYT" f()
and setting A = 1 we get the so called Euler equation:
of (xi)
i =kf(zi
v = k()

in 3D this can also be written as:

x- Vf(x) = kf(x)

2.12.1 Example

The function f(z,y, z) = Z is homogeneous of degree 1, because:

Ay wy
and the Euler equation is:
of ~of  of _
xax +y5‘y +Zaz =/
or
y__.,x _TUN_ MY
7 +yz +Z( 22) z

Which obviously is true.

2.13 Differential Geometry

2.13.1 Manifolds

Scalars, Vectors, Tensors

Differentiable manifold U is a space covered by an atlas of maps, each map covers part of the manifold and is a one to
one mapping to an euclidean space R™:

¢:U—R"

Let’s have a one-to-one transformation between z# and z'# coordinates (we simply write x = z#, etc.):
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Scalar ¢(x) is such a field that transforms as (¢’ (z') is it’s value in 2’ coordinates):

¢ (z') -

¢( of a scalar, that transforms as ( S 18

One form p,, () is such a field that transforms the same as the gradient =5
it’s value in 2’ coordinates):

o¢'(z')  0x¥ 9¢'(z')  0x¥ 0¢(x)

ozt dx'm dxv Izt Oz

SO
ox?
p:i(xl) = amﬁpu (z)

Vector V¢ is such a field that produces a scalar ¢ = V“p, when contracted with a one form and this fact is used to
deduce how it transforms:

¢ V/a/_vlaaﬁ

a/a :(bzvﬁpﬁ

so we have

o 07P
v or'e Ve

multiplying by 2 amﬁ and using the fact that gj,a %9;5 = ggfi = 0¥ we get

ox'*

Vi =
0zb

Higher tensors are build up and their transformation properties derived from the fact, that by contracting with either a
vector or a form we get a lower rank tensor that we already know how it transforms.

Having now defined scalar, vector and tensor fields, one may then choose a basis at each point for each field, the only
requirement being that the basis is not singular. For example for vectors, each point in U has a basis €, so a vector
(field) V' has components V' with respect to this basis:

V=V,

Covariant differentiation

The derivative of the basis vector ae“ is a vector, thus it can be written as a linear combination of the basis vectors:
0é, .
T _TH €y
0zb af

Differentiating a vector is then easy:

ave 9én OV ove
S+ VO = Sl + VOTh e, = (

OxhB

ed 2

So we define a covariant derivative:

(e} 8V(X e}
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and write

VsV = (v/ﬂ?) En = (V5V)E,
I.e. we have:

VsV = Va(VeE,) = (VV)éy,
We also define:

VXV = vXﬁgB‘? = XBVBV = Xﬁ(VQVa)ga
A scalar doesn’t depend on basis vectors, so its covariant derivative is just its partial derivative

Vg = 22

ox™
Differentiating a one form p,, is done using the fact, that ¢ = p, V' * is a scalar, thus

0V O
V0= Tgpr T an’ tPe

ove  0Opa '
57— ag5 " T Pa (VeV - TV") =

Opa o
=Vve (aiﬁ - rgﬁpﬂ> + pa VsV

- Vavﬁpa +pavﬁva
where we have defined

pa

V,@pa = "

0B LagPu

vector:

This is obviously a tensor, because the above equation has a tensor on the left hand side (V 3¢) and tensors on the right
hand side (po, VgV ® and V). Similarly for the derivative of the tensor A*” we use the fact that V# = A"p, is a

VeVH = Vp(A"py) = 0(A"py) + Ts A% Py = puOg A + A Oppy, + T3 A%y

— p, s AP 4 APV (vﬁpy n rgﬁpﬂ) +TH A%, = p, V5 AR + AT gp,
where we define

Vg AM = g AM + FZBA“” + FgﬂA“a
and so on for other tensors, for example:

VpAl, = g A%, + TV A%, — T2, A",
VA = 0gAu —TigAay —T75 A0

One can now easily proof some common relations simply by rewriting it to components and back:

Ve(fY)= (V)Y + fVY

VX'(Y—FZ) VX‘Y-FVX'Z
VgV = fVgY
Change of variable:

a ozt dx¥ _, 0@
By =

N 83:‘/0‘ 82130
ox'B oz~ M Oxo

0z Ox'POx

2.13. Differential Geometry
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Parallel transport

If the vectors V' at infinitesimally close points of the curve z#(\) are parallel and of equal length, then V is said to be
parallel transported along the curve, i.e.:

dVv
— =0
dA
So
W _dVoe) oty sy 8 paye
N T N T Ty €a) = v €a =
dA dA a7’ a7
In components (using the tangent vector U# = ddi/\ﬁ):
dve
=UPVaV* =0
A ?
Fermi-Walker transport
In local inertial frame:
U3 = (1,0,0,0)
ds?
=0
dt
We require orthogonality S,,U* = 0, in a general frame:
dse dau#
=\U*=5,—U"
dr Hodr

where A was calculated by differentiating the orthogonality condition. This is called a Thomas precession.
For any vector, we define: the vector X* is Fermi-Walker tranported along the curve if:
dX* du~ du#
=X, Ut — X U%——
dA dA dA

If X*# is perpendicular to U*, the second term is zero and the result is called a Fermi transport.

Why: the U* is transported by Fermi-Walker and also this is the equation for gyroscopes, so the natural, nonrotating
tetrade is the one with e}y = U*, which is then correctly transported along any curve (not just geodesics).

Geodesics

Geodesics is a curve 2 () that locally looks like a line, i.e. it parallel transports its own tangent vector:

UPVU* =0
$0
UPOsU* +T4,U°UY =0
or equivalently (using the fact UP 95U = % 5254 e~ = %):

d2ze o dzf dz

w2 ey T
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Curvature

Curvature means that we take a vector V#, parallel transport it around a closed loop (which is just applying a commu-
tator of the covariant derivatives [V, V3]V#), see how it changes and that’s the curvature:

[Va,Vg]V“ = R”VQBVV
That’s all there is to it. Expanding the left hand side:

(Vo VolV# = (8aT4, = 0T%, + T4, TG, — Th,T%, ) V*
we get

Ruvaﬁ - aargl, - 85Fgl, + FZJFUIJ - FH e

Bo™ av

Lie derivative

Definition of the Lie derivative of any tensor 7 is:

£5T = lim d)t*T(th(];)) —T(p)

it can be shown directly from this definition, that the Lie derivative of a vector is the same as a Lie bracket:
LsV =[U,V]
and in components
LpVe =[U,V]* =UPVaVe —VIVaU™ = UP9sVe — VU™
Lie derivative of a scalar is
Lyf= VEOLf
and of a one form p,, is derived using the observation that f = p, V* is a scalar:
Lopu =V 'Vypu +0,V, VY =VY0,p, + p,0, V"
and so on for other tensors, for example:

‘C\_/'g;w = Vavocguu + gauvuva + guavuva = Vaaocguu + gauauva + guaayva

Metric

In general, the Christoffel symbols are not symmetric and there is no metric that generates them. However, if the
manifold is equipped with metrics, then the fundamental theorem of Riemannian geometry states that there is a unique
Levi-Civita connection, for which the metric tensor is preserved by parallel transport:

vug(xﬂ =0

We define the commutation coefficients of the basis ¢, by

o - o o
cw€a = Vgue,, — Ve, €,
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In general these coefficients are not zero (as an example, take the units vectors in spherical or cylindrical coordinates),
but for coordinate bases they are. It can be proven, that

T = 59" (08900 + 0agop — Oogap + Cavs + Coa — Coap)
and for coordinate bases c*,,,, = 0, so
re 5= e,
Ih s = 39" (08900 + Oadop — Oogop)
As a special case:
T = 39" (0890u + Ougap — Oagus) = 59" pgon =
= 1Trg 959 = 3Trdzlogg = 195Tr log g = 195 log | det g| = 9slog /| det g| =
Opdet g = ;(% Vdetg|
V[ detg|
All last 3 expressions are used (but the last one is probably the most common). g is the matrix of coefficients g, .
At the beginning we used the usual trick that g#“ is symmetric but 9,,9,3 — 0,9, is unsymmetric. Later we used

the identity Tr log g = log| det g|, which follows from the well-known identity det exp A = exp Tr A by substituting
A = log g and taking the logarithm of both sides.

1
~ 2detyg

Diagonal Metric

Many times the metric is diagonal, e.g. in 3D:

K200
gis={0 h3 0
0 0 K

(in general g;; = diag(h?, h3,...)), then the Christoffel symbols Ff’j can be calculated very easily (below we do not
sum over ¢, j and k):

Ffj = 19" (0j91 + 0ig1; — D19i5) = L9"* (0 9ki + Digrj — Okgij)
If k =7ork = jthen

i i i ii 1 1
Uy =T =T = 39" (9595 + 9i9ij — 9i955) = 39" 0j9: = %ﬁé)jh? = Eajhi (2.13)
otherwise (i.e. k # i and k # j) then either i = j:
: 1 h;
IE =T = 16" (0igui + Oigki — Ongii) = — 39" Ongii = _%ﬁakh? = _?akhi (2.14)
k k

ori#j(i.e i#j#k):
Ffj - %gkk (0j9ki + Oigrj — Okgiz) =0

In other words, the symbols can only be nonzero if at least two of ¢, j or k are the same and one can use the two
formulas (2.13) and (2.14) to quickly evaluate them. A systematic way to do it is to write (2.13) and (2.14) in the
following form:

. . 1 o
=15 = Eajhi 1, j arbitrary (2.15)
j hi .
Fiz = —ﬁajhl (3 7’5 Vi
J
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Then find all ¢ and j for which 9;h; is nonzero and then immediately write all nonzero Christoffel symbols using the
equations (2.15).

For example for cylindrical coordinates we have h, = h, = 1 and hy = p, so 9;h; is only nonzero for ¢ = ¢ and
7 = p and we get:

1 1 1
I =T% = —3,hg = ~dpp=—~
bp P h¢P¢ pﬂp P
h
p ¢ __r _

all other Christoffel symbols are zero. For spherical coordinates we have h, = 1, hy = p and hy = psin6, so 9;h; is
only nonzero for: =6, j = pori=¢,j =pori = ¢, j = 6 and we get:

1 1
sz = r;ﬂe = Eaphe — ;app =

D=

he p
gy = _ﬁapfm = _ﬁapp =-r
P

sz = Fﬁ(b = ];ap% = psilngap(psine) = %
T, = —Z—Z&,,hq; = —%;leap(psin@ = —psin® 6
p
% =Th, = };am = psilneag(psme) = ‘;’jz
Fg¢ = ;Lgagi% = fpspi;leﬁg(psinﬁ) = —sinfcosf

All other symbols are zero.

Symmetries, Killing vectors

We say that a diffeomorphism ¢ is a symmetry of some tensor T if the tensor is invariant after being pulled back under

¢:
o, T =T

Let the one-parameter family of symmetries ¢, be generated by a vector field V#(z), then the above equation is
equivalent to:

LT =0

If T' is the metric g,,,, then the symmetry is called isometry and V'# is called a Killing vector field and can be calculated
from:

'Cvgl“’ = Vavagw, + ga,,V#Va + g#aVVVa = V#Vl, + VUV# =0

The last equality is Killing’s equation. If x# is a geodesics with a tangent vector U* and V* is a Killing vector, then

the quantity V},U* is conserved along the geodesics, because:
d(v,u*
% =U"v,(V,U*)=U"U"V,V,+V,U"'V,U* =0

where the first term is both symmetric and antisymmetric in (u, ), thus zero, and the second term is the geodesics
equation, thus also zero.
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Divergence Operator
VAt = 0 AN + T A7 =

— A" ¢ \/17 (00 V/Tdetg]) 4

\/|dit Oy (\/|detg A")

If the metric is diagonal (let’s show this in 3D):

R? 0 0

gij=10 h% 0

0 0 A2

then

\/|det gij| = hihohs

,i 0 0

gi=10 hi% 0

0o o0 4

and

Laplace Operator
Vi =V, Vip=20 V“go—i—f‘“ Vo2 =0,0"p+ 1,070 =
=0,0"p + ———— (0o+/|detg| ) 07 =
! /Tdet g| ( )
(\/|detg | O* ) #8,1 ( |detg|g‘“’8(,gp)
\/\det V| det g|

If the metric is diagonal (let’s show this in 3D):

hi 0 O
gi;j =10 h% 0
0 R
then
\/ | detgij| = hlhghg
1
) 7z 0 0
=10 3 (13
0 0 7z
and

Mathematics
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Covariant integration

If f(x) is a scalar, then the integral [ f(z)d*z depends on coordinates. The correct way to integrate f(z) in any
coordinates is:

JECNS
where g = det g,,,,. The Gauss theorem in curvilinear coordinates is:
1
/ V,ut/|gldte = / —=0, (\/|g|u“) V0gldtz = / O (\/|g|u“) diz =
Q o V/lgl Q
= / Vlglutn,d*z = utn,/|g|ld*x
o0 o0

where 0f2 is the boundary (surface) of {2 and n,, is the normal vector to this surface.

2.13.2 Examples

Weak Formulation of Laplace Equation
As an example, we write the weak formulation of the Laplace equation in arbitrary coordintes:
Vi —f=0
/ (Vv — fv) /|g|d®z =0
1 -
/ <\/?82 ( |9|9Uaj¢) v fv> Vl0gld*z =0
/ (@ ( Iglg“@jw) v— foy Ig\) d’z =0
Now we apply per-partes (assuming the boundary integral vanishes):
/ (— 1919770000 — fuy/ Igl) &’z =0
/ (—g"0;00,0 — fo) V/]gld*z =0

For diagonal metric this evaluates to:

1
/ <— > 2010w — fv) hihohsd®z =0

Cylindrical Coordinates

T = pcosqo
y = psing
z=2z
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The transformation matrix is

oz, y,2) cos¢p —psing 0

—= - =|sin¢g pcos¢p O

The metric tensor of the cartesian coordinate system % = (z,y, 2) is go» = diag(1,1, 1), so by transformation we
get the metric tensor g;; in the cylindrical coordinates =’ = (p, ¢, 2):

92 92b (az)?ag@
=) a5 =
X

95 = a0 9 = \ 0

Ap, ¢, z) Ap, ¢, z)
cos ¢ sing 0 1 0 0 cos¢p —psing 0 1 0 0
= | —psing pcos¢p 0 0 1 0 sing pcos¢p 0] =0 p> 0O
0 0 1 0 0 1 0 0 1 0 0 1
1 0 0
g7=10 5 0
0 0 1
detg:detgij:p2
hy="h,=1
he =p
1 1 1
I =T% = —3,hg = ~dpp= -
¢p pop he plte p pP P
he p
oo = —h—%aph¢ =120 =—p
; 1 . 1 )
V-A=V;A" = 0; (h1hoh3zA') = =0; (pA") =
i h1h2h31(123) pz(ﬂ)

1 1
= S0p(pA”) + 09 A® + 0. A% = 9,A° + A+ DpA? + 0. A7

V29 = ViVip = 0. (VIdetglg0s0) =

1
/| det g|

1 3 1 1 1 1
=20, (pg10,0) = =0, (pd,p) + -0 ( = ) + -8, (p0. ) =
p (rg"0;¢) p 5 (p0p¢) 500\ Pzl ) + 2 (pd-9)

1 1
= ;3p (pO,p) + ?%%cp +0.0,0 =

1 1
= 0,0, + ;aptp + ?6¢8¢,<p + 0.0,¢

As a particular example, let’s write the Laplace equation with nonconstant conductivity for axially symmetric field.
The Laplace equation is:

V-oVe=0
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so we use the formulas above to get:

dp 1 0 O0p 0 Op 08790

i 0
O_V'UW_V”V“”_%J%+E%U%+$U& ;8,0

but we know that ¢ = ¢(p, 2), so g—i = 0 and the final equation is:

To write the weak formulation for it, we need to integrate covariantly (e.g. p dpd¢dz in our case) and rewrite it using
per partes. We did exactly this in the previous example in a coordinate free maner, so we just use the final formula we
got there for a diagonal metric:

1
/ <—8pg08pv - E&bg@(%v - 82¢8Zv> opdpdpdz =0
and for 0y = 0, we get:

—27 / (0p00,v + 0,90,v) opdpdz =0

Spherical Coordinates
T = psinfcos ¢
y = psinfsin ¢

z = pcosf

The transformation matrix is

sinfcos¢ pcosfcosd —psinfsing
= | sinfsing pcosfsing psinfcosp
9(p,0,9) cos ¢ —psiné 0

(z,y,2)

The metric tensor of the cartesian coordinate system ¢ = (z,y, 2) is ga» = diag(1,1, 1), so by transformation we
get the metric tensor g;; in the spherical coordinates ' = (p,0,9):

_owait _(oa\" oi

95 = 9zt 9237 = \ oz ) Yoa

—_
o

_<a<x,y7z>>T o1 o) ey
sin @ cos ¢ sin 6 sin ¢ cos 6 1 00 sinfcos¢ pcosfcos¢p —psinfsing
= | pcosfcos¢p pcosfsing —psinf 01 0 sinflsing pcosfsing psinfcosey | =
—psinfsing psinfcos ¢ 0 0 0 1 cos ¢ —psiné 0
1 0 0
=10 p? 0
0 0 p?sin?0
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10 0
gi=1(0 2 0
0 0 =g

p“ sin

det g = det g;; = p*sin? 0

V'Vip =000 + 9;(det g) g’ Onep =

1
2det g

= 90,0, + (0p(p" sin®0) g”°0pp + Dy (p" sin® 0) " Dpep)

2p4 sin” 0

cosf

= g”&@gp + 3pg0 + 89(,0 =

p%siné

1 1 cosf
= 0,0 — 00 ———— 0,40, 3
pp(p+p2 00(p+pzsin20 o0sP + pgo—i-p sin 6

Rotating Disk

Let’s have a laboratory Euclidean system z* = (¢, z, y, z) and a rotating disk system a'* = (', 2’3/, 2"). The relation
between the frames is

t/ 1 0 0 0 t t
| [0 coswt sinwt 0 z| | zcoswt+ ysinwt
y ] |0 —sinwt coswt 0 y| | —xsinwt + ycoswt
2! 0 0 0 1 z z
The inverse transformation can be calculated by simply inverting the matrix:
t 1 0 0 0 t/
z| [0 coswt —sinwt 0 x!
y| |0 sinwt’ coswt’ 0 y
z 0 0 0 1 2!
so the transformation matrices are:
1 0 0 0
x| —zwsinwt 4+ yweoswt  coswt  sinwt 0| _ 02’
Oz | —zwcoswt —ywsinwt —sinwt coswt 0] 9z
0 0 0 1
1 0 0 0
0z | —2'wsinwt’ —y'wcoswt’ coswt’ —sinwt’ 0| _ Jdz
ox'r | Ywcoswt —ywsinwt’  sinwt’  coswt’ 0| 9’
0 0 0 1

The problem now is that Newtonian mechanics has a degenerated spacetime metrics (see later). Let’s pretend we have
the following metrics in the z* system:

Guv =

oS O o
oo = O
o= O O
_— o o o

34 Chapter 2. Mathematics



Theoretical Physics Reference, Release 0.1

and
. 1+w2(x’2+y’2) _wy/ wr' 0
, _ Oxt Ox” _ (9 dr\ —wy/ 1 o o] _
Jap = G ope 9 = \ow ) I\ow' ) ~ wa! o 1 o]~
0 0 0 1
However, if we calculate with the correct special relativity metrics:
-2 0 0 0
10 1.0 0] _
=10 01 0|7
0 0 01
and
. —c? +w2(ac’2 +y/2) _wy/ wr' 0
, Ozt Ox” _ [ 9Oz Oz \ —wy’ 1 o o _
o = G oe I =\ o ) I\ o) = wa' o 1 o 9
0 0 0 1

We get the same Christoffel symbols as with the diag(1,1, 1, 1) metrics, because only the derivatives of the metrics

are important. Then the only nonzero Christoffel symbols are

Yo = —2'w?
1 _pl o
[oo =130 = —w
2 _ .12
oo = —yw

2 2
I =T =w
If we want to avoid dealing with metrics, it is possible to start with the Christoffel symbols in the z* system:
I, =0
and then transforming them to the 2'# system using the change of variable formula:

e ozt dx” 1o o™ N oz’ §%x° 02/ 0%a”
BY = 0xB 9z M 9xze | 0o 0280z | 0x” 0x'Bdx!

As an example, let’s calculate the coefficients above:

ox'?  9%x° ox? 9 0x°

2, = = =
097 920 920020 ~ 9z 920 0z’
1
. . 8 _ : tl — o tl
= (—:Uw coswt —ywsinwt —sinwt coswt 0) — C,U wsmwl y/ W?OS w/
ot | rwcoswt’ — y wsinwt
0
0
/7,2 / /,,2 o3 !
. . - t t
= (—xw coswt —ywsinwt —sinwt coswt O) x/w2 c'osw/ + y/w2 S w | = —y’w2
—r'wsinwt’ — Yy w* coswt
0
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Fll()() — _1'/0.}2

e dx'* 9%z 0a"? 9 a7
00— " 107 520 920027 — 9z° 920 9zt

0
. : a t/
= (—:cw coswt —ywsinwt —sinwt coswt 0) o (s:?r?:jt’ =
0
0
. : - i t/
= (—xw coswt —ywsinwt —sinwt coswt 0) :;zlsn:;/ =w
0
F/l02 — F/120 = —w

So we got the same results.

Now let’s see what we have got. Later we’ll show, that the T}, coefficients are just ;¢ in the Newtonian theory. E.g.
in our case we have:

Iy = —2'w? =3¢
F620 = —yw?= (%gb

To =0=10.¢
from which:
Ot, 2.y, 2) = —3(a” +y?)w? + C(t)
and the force acting on a test particle is then:

F=-mVeé=m(z,y,0)w? =mr'w

where we have defined v’ = (2/,y’,0). This is just the centrifugal force. Also observe, that we could have read ¢
directly from the metrics itself — just compare it to the Lorentzian metrics (with gravitation) in the next chapter.

The other two terms (I, I'¢4 and the symmetric ones) don’t behave as a gravitational force, but rather only act when
we are differentiating (e.g. only act on moving bodies). Below we show this is just the —2w X % term (responsible
for the Coriolis acceleration).

Let’s write the full equations of geodesics:

d220
d\2

Pol g (d0)F o da? da?
200N dx

d\ dar

[\v)

|
=

d22? 5 [ dz? ? 5 dat da®
e Lo (ax) 20y Ty T
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d2z3
e =0
This becomes:
d2z 9 dy

d?y 5 dx
= J _ 9 —
az Ty
4’z
412

we can define r = (z,y,0) and w = (0,0, w). Then the above equations can be rewritten as:

=0

d?r 9 dr
@:rw —QWXE

So we get two fictituous forces, the centrifugal force and the Coriolis force.

Now imagine a static vector in the z* system along the x axis, i.e.

1
1
M = =
V 0 v
0
then
1 1
/ !/ .
Vi Ox MV“ _ Blv _ | ~awsinwt + wa(.)swt + Cf)swt _ y’c;; + cqswt’/ v
ozr™ ox —ZTWw CcOSwt — yw sinwt — sinwt —2'w — sinwt
0 0

In the last equality we transformed from z* to z’# using the relation between frames.

Differentiating any vector in the xz* coordinates is easy — it’s just a partial derivative (due to the Euclidean metrics).
Let’s differentiate any vector in the z'# coordinates with respect to time (since ¢ = ¢, the time is the same in both
coordinate systems):

VoV = V" + Th, V'™

V/O 8Qv/0 aOV/O
v V/l B a()v/l + ]_'\(l)ov/o + 1‘%2‘//2 B aovll _ x’oﬂV’O _ OJV/2 B
0 V/Q - aole + 1—\(2)0V/0 4 F(vall - aole _ y/w2vl0 + WV/I

V/3 aOV/?, 80‘//3
v 0 0 0 O Vo
%8 —2'w? 0 —w 0] (V"

= 80 V/2 + 7y/w2 w 0 0 V/2 (2 1 6)

%6 0 0 0 O %6

For our particular (static) vector this yields:

1
y'w + coswt’
—x'w — sinwt’

0

Vo

o O o O
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as expected, because it was at rest in the z* system. Let’s imagine a static vector in the z'# system along the 2’ axis,
ie.

1
1
o _
w 0
0
1 1
W — oz e —r'wsinwt’ — y'wcoswt’ +coswt’ | | —yw + coswt
T 9gla T | Ywceoswt —y'wsinwt’ +sinwt’ | T | zw+sinwt
0 0
then
1 0
1 —2'w?
o _
VoW =Vo || = —y'w? 4w
0
1 0 00 0 O 0
w_ —yw + coswt _ | W sin wt 0 0 —w O cos wt _
Vol % Tw + sinwt w cos wt 0 w 0 O sin wt wx W
0 0 00 0 O 0
Similarly
0
) B — w2
VoV == | 7V,
0
0
—w? coswt
H —_——
VoVolV —w?sinwt
0
How can one prove the relation:
dA dA
o wxA (2.17)
T AT

that is used for example to derive the Coriolis acceleration etc.? We need to write it components to understand what it
really means:

A0 0 0 0 O A0 A0
A 0 0 —w 0 Al Al
Vo A2 = 0 w 0 0 A2 + 9o A2
AP 0O 0 0 O A A3

Comparing to the covariant derivative above, it’s clear that they are equal (provided that ' = 0 and ¢’ = 0, i.e. we are
at the center of rotation).

Let’s show the derivation by Goldstein. The change in a time dt of a general vector G as seen by an observer in the
body system of axes will differ from the corresponding change as seen by an observer in the space system:

(dG)space - (dG)body + (dG)rot
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Now consider a vector fixed in the rigid body. Then (dG)pody = 0 and
(dG)rot = (dG)space = A2 x G

For an arbitrary vector, the change relative to the space axes is the sum of the two effects:
(dG)space = (dG)body + d2 x G

A more rigorous derivation of the last equation follows from:

/
Gi = ajiGj

dGl = aﬂdGS + dajiG;

Let’s make the space and body instantaneously coincident at time t, then a;; = 0;; and daj; = —€;,d; = €;5;dS2,
so we get the same equation as earlier:

dGZ = dG; + EikdekG;-
Anyhow, introducing w by:

_do
Todt

( dG ) ( dG )
o= = (= twxG
dt space dt body

Linear Elasticity Equations in Cylindrical Coordinates

we get

Authors: Pavel Solin & Lenka Dubcova

In this paper we derive the weak formulation of linear elasticity equations suitable for the finite element discretization
of axisymmetric 3D problems.

Original equations in Cartesian coordinates

Let’s start with some notations: By u = (u1, us, U3)T we denote the displacement vector in 3D Cartesian coordinates,
and by e the tensor of small deformations,

L aui+8u7' 1<i,7<3
€ij = = i ) > by ) =9
1= 9\ 0z; " Omi J

The stress tensor ¢ has the form
oij = Njjdive + 2pe;5,  1<1i,5 <3, (2.18)
where

3
6uk

3
= Zekk = Tr(e).
e et

The symbols A and y are the Lam’e constants and d;; is the Kronecker symbol (J;; = 1if ¢ = j and d;; = 0 otherwise).
The equilibrium equations have the form

divu =

3
9o .
Z%jtfi:o, 1<i<3, (2.19)
j=1
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where (f1, fa, f3)T is the vector of internal forces (such as gravity).
The boundary conditions for linear elasticity are given by

u; = U; only

3
g 05Ny = G
Jj=1

on 'y,

where g; are surface forces.

Weak formulation
Multiplying by test functions and integrating over the domain {2 we obtain
[
O0x;
Using Green’s theorem and the boundary conditions

O oinivi= [ fivy,, 1<i<3.
/z o /mz i = |

3
v,

/Zo'ij&_/ gﬂh‘:/fivi, 1<u2<3.

Q5 Ox; Ty Q

Let us write the equations (2.21) in detail using relation (2.18)

ﬁfflvz, 1<i<3.

Thus

6 Bvl 8U1 6UQ 61}1 8U1 6u3 61)1
2 kTt ) [t - A [
/Q [Adm” o ] e (axz * 8x1> oz * (axg * 8&01) 93 /F gin
8u1 (9UQ 6’02 6 81)2 3uz 6’&3 6’02
/Q,M ((933‘2 + (3([}1) 81‘1 |:/\le11, + 2”8 :| &v + ((%g, + (91L‘2> 871'3 - /F2 ga2v2
(9u1 8u5», 8’03 8U2 8u3 81;3 . 8u3 81)3
/Q“ (axg - 81:1) a1 (axs " am) 92 [Ad”“ " (%3] dzy /r s

Elementary transformation relations

(2.20)

2.21)

First let us show how the partial derivatives of a scalar function g are transformed from Cartesian coordinates x1, €2, 3

to cylindrical coordinates 7, ¢, z. Note that

x1(r, ¢) = 7 cos §,

zao(r, ) =rsing, w3(z) =z

Since
g(x1,22,23) = g(x1(r, 9), 22(r, ¢), 23(2)),
it is
09 _ 99 99
or — On COSd)Jr@xg sin ¢,
o9 _ oy 0y
% = axl(—rsmqﬁ) + 8x2TCOS¢’
9 _ 99
dz  Oxg
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From here we obtain
dg

Oz,

dg

0y
99

31‘3

B Bg 1 0g

= qb——%smd),
B ag ) 1 0g

= 5.5 ¢+78—¢cos¢,
_ 9

0z

The relations between displacement components in Cartesian and cylindrical coordinates are

Uy = Uy COSQ,
Uy = UpSing,
us = Uy.

The same relations hold for surface forces g; and volume forces f;.

Applying (??) to u1, we obtain

Ou 0w ¢_,%« b,
(933‘1 8 (b
8u1 8u1 aul
9z, — or sin ¢ + " 00 cos @,
Oun _ Ow
Using (??) and the fact that u,.- does not depend on ¢, this yields
Ou;p  Oup 4 1 5
o, or cos” ¢ + ;ur sin” ¢,
r . 1 .
% = 8lcosd)sm¢— — U, COS ¢ sin ¢,
0xo or T
8u1 5‘ur
871‘3 = E COS (ZS
Analogously, for us we calculate
0 Ou, 1
guz Lcos¢sin¢— — U, COS ¢ sin ¢,
0x1 or T
ro 1
g—zz = 5; sin’ ¢ + ;ur cos? ¢,
8u2 6‘ur
871‘3 = a sin QZS
For ug, using that it does not depend on ¢, we have
Ous ou,,
87551 = cos @,
Ous ou, .
871‘2 = W S1n (b,
Ous  _ Ous
drs 0z
For further reference, transform also divu into cylindrical coordinates
. 6u1 8u2 8’[13
d = —+—+—=
v 8x1 + 8%2 31’3
Ouy
= 5; cos® ¢ + ur 20+ u, 82
_ Ou, . lu n 8uZ
- or r 0z
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Axisymmetric formulation

Assuming that the domain {2 is axisymmetric, we can begin to transform the integrals in (??) to cylindrical coordinates.
Recall that the Jacobian of the transformation is J(r, ¢, z) = r. The first equation in (??) has the form:

ou, 1 ou, ou
/{[A(ar e ) 2!

Uy

cos? ¢ + 1u7~ sin? d))] (aa—r

1
cos® ¢ 4 —v, sin? ¢) +
T

2 (861? cos psin ¢ — %ur cos ¢ sin (b) (%1: cos ¢ sin g — %vr cos ¢ sin ¢> +

ou,
TH 0z

The second equation in (??) has the form:

z a T
0s ¢ Y — FgrUpCOS°h = / T fy vy cOS° @,
3 32’ s Q

/ 24 (8 cos ¢sin g — luT COb¢bln¢) (81)' cos ¢sin ¢ — lvr cos¢sin¢) +
Q or r or r

ou, 1 ou, ou,
r[)\(ar +;ur+ o )+ 20 (a

cos qb)] (881" in? ¢ + v,«cos 2o) +
T (E?ZT sin ¢ + 3 sin ¢> (——sing) — /r 79, vy sin® ¢ = /Qrfr v sin® ¢,

Adding these two equations together we get

ou, 1 ou, ., 0v, 1
/Qr/\( or + ;UT + 0z ) or + ;UT) +

T T 1 T . 1 1
/ |2 Ouy 9 cos* ¢ + —u, —av sin 2 Ouy sin? ¢ cos? ¢ —|— —5 Up U sin* ¢ | +
Q ar or r o Or r Or

Ou, Ov, . 4 1 Ov, 1 du,
2 ( a or sin (b—i—;ur o - sin? ¢ cos? qb—!— urvrcos ¢>
ou, Ov, 1 Ov, 1 Ou,
4 ( o oy ¢ 2 psin® ¢ — Sur s — cos? ¢ sin? qu— urvr cos? ¢ sin? (b)

ou, 0v, n ou, Ov, _/ B / f
0z 0z ar 0z r, Jrtnl = Q r ot

This can be simplified to
/ (aur n 1 n 3u2)(5vr n 1 )+/ 9 ou, Ov, n i n ou, Ov, n Oou, Ov,
ar T e Vo TR Q e ar or i 0z 0z or 0z

_/ grUrT = / fr VrT
I's Q

Finally, the third equation in (??) has the form
ou, Ou, v, Ou,. 2 . ov, .
/Qru<(;;cos¢+ au os¢>é;;cosq§—|—ru<;; 3 smé)(;;smqb—l—

ou, 1 Oou, Oou, | Ovu, B
r |:)\( or +;U’T+E)+2N 8Z:| 9z _/I‘zgzvzr—/gfzvzr~

This gives us
/r auravz+auzauz+28uzauz A a“’”+1u +8u2 8027/ vr—/f o
Q K\ 8z ar " or or 0z Oz o r " 0z ) 0z F2gz = gt
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Since the integrands do not depend on ¢, we can simplify this to integral over €2y, where g is the intersection of the
domain €2 with the 7 z3 half-plane. Dividing both equations by 27 we get

)\(%_’_1 +8uz)(8vr+1 )+/ 9 8u,.8vr+i i 6u,.8vr+6uz ov,
Q0 o TR T e Ny TR o e ar or i 0z 0z or 0z

7/ GrUrT = fr UrT
I's Qo

Oou, Ov,  Ou, Ov, Ou, Ov, Oou, 1 Ou, \ Ov,
g + + 2 + 7 + —u, + — gV, T = fz v,
Qo r P Qo

0z Or or Or 0z 0z or 0z ) 0z

Coordinate Independent Way

Let’s write the elasticity equations in the cartesian coordinates again:

Oij = Aéijakuk + u(ajui + ain)

Those only work in the cartesian coordinates, so we first write them in a coordinate independent way:

07 = \gIVuF + p(Viu' 4 Viud)
V0t + i =0

so:
V; (A7 Viuk + p(Viu' + Viud)) + ff =0
The weak formulation is then (do not sum over 7):
—/Vj ()\gijvkuk + (Vi + Viuj)) vi\/Ed?’x = /f%%/@d%c
We apply the integration by parts:

/ ()\gijvkuk + p(Vu' + Vi) V,v'/|gld®z = /fivi\/Ede
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This is the weak formulation valid in any coordinates. Using the cylindrical coordinates (see above) we get:

x = (p, ¢,2)
d3z =dpdedz
1 0 0
g7=1[0 5 0
0 0 1

Vgl = \/Idetgi;[ = p

1 1
Vit = —=0(V/lglu") = ;ak(Puk) =

vari
1
= —uf + 0,u” + 8¢u¢ + 0,u”

4

(Viu® + Vzuj)Vjvz = (gjkvkuz + ngVkuj)Vjvz = (0,u* + 0,u”)0,v* + (0,u® + 0.u*)0,v° =
= (0,u® + 0,u”)0,v° + 20.u*0,v*
. 1
gV juP = gPPV uf = 9,0 +F£pvk = 9,v° + ;v¢

1
02
gV 0* = g7*V 07 = 0,07 + T},

/ (/\g” (pup + dpu’ + dgu® + 8zuz) + p(VVu' + V%ﬂ)) Vv'pdpdedz = /fzvlpdpdqﬁdz

_ 1 1
g9V 0% = g?Vv? = = (95v° + Tipyob) = = (950° + ;vp) =

P
kE _ azvz
fort =1,2,3 we get:
1 1
//\ (pup + Opu’ + dgu® + Bzuz> (8pvp + pv¢> p+ 1 (20,u”0,0” + (0.u” + 0,u*)0;v”) pdpdpdz = /f”v”pdpdd)dz
1 1 1
/)\ (u" + 0,u” + 6¢,u¢ + azu2> — (8¢v¢ + Up> p+ 1 (20,u”0,0° + (0.u” + 0,u*)0,0v”) pdpdpdz = /f¢v¢pdpdgbdz
P p p

//\ <;u” + 0,u” + Opu® + 8Zuz> 0.v"p + 1 ((0,u” + 0,u”)0,v* + 20,u*0,v*) pdpdedz = /fzvzp dpdedz
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CHAPTER
THREE

CLASSICAL MECHANICS, SPECIAL
AND GENERAL RELATIVITY

3.1 Newtonian Physics

3.1.1 Introduction: Why Tensors

This section gives a brief introduction, and in the next sections we derive everything in detail. The Newton law is:

d2x
ma = F
and using a potential for F', we get:
d?x
@ - Ve
d2zt i
e =0

the last two equations are two different equivalent ways to write a tensor equation in 3D, which means that this equation
has the exact same form (is valid) in any (spatial) coordinate system (rotated, translated, in cartesian coordinates,
spherical coordinates, ...). Each coordinate system has a different metric, but we can always locally transform into
gi; = diag(1,1,1).

However, if our coordinate transformation depends on time (e.g. a rotating disk), then the above tensor equation
changes (e.g. for the rotating disk, we get the Coriolis acceleration term), that’s because time is treated as a parameter,
not as a coordinate.

To fix this, we need to work in 4D and treat time as a coordinate, so we introduce z° = ¢t where ¢ is any constant

speed (it can be any speed, doesn’t have to be the speed of light). Then in 4D, the above equations are not tensor
equations anymore, because the operator % = ¢0p is not a tensor. The 4D tensor formulation happens to be the
geodesic equation:

da’ _ da®
ax Pan
RQO = 47TGp

Rij =0

=0

Which (given that we know how to calculate the Ricci tensor in our coordinates) is valid in any coordinates, not only
rotated, translated, cartesian, spherical, ..., but also with arbitrary time dependence, e.g. a rotating disk, accelerating
disk, ...
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After suitable local coordinate transformation, we can only get two possible metrics (that connect the time and spatial
coordinates): diag(—1,1,1,1) and diag(1,1,1,1). Inertial systems have no fictitious forces, so the metrics is one of
the two above (possibly with ¢ — o0). Transformation between inertial systems is such a coordinate transformation
that leaves the metric intact, e.g.:

g = ATgA

There is no coordinate transformation that turns the metric diag(—1, 1,1, 1) into diag(1, 1, 1, 1), so we need to choose
either one to describe one inertial system and then all other inertial systems will automatically have a metric with the
same signature.

The Newton law is valid for small speeds compared to the speed of light, so when we want to extend the theory
for all speeds, we only have 4 options: O(3, 1) with either ¢ — oo or ¢ finite and O(4) with either ¢ — oo or ¢
finite. If c is finite, it has to be large enough, so that we still recover the Newton law for small speeds with the given
experimental precision. All 4 cases give the correct Newton law, but give different predictions for large speeds. All
we need to do to decide which one is correct is to perform such large speeds (relativistic) experiments. It turns out
that all such relativistic experiments are in agreement with the O(3, 1) case where c is the (finite) speed of light and
with disagreement with the 3 other cases. For small speeds however (i.e. Newtonean physics), all 4 cases will work,
as long as c is chosen large enough.

Given a tensor equation, we can easily determine, if it transforms correctly under the Galilean (¢ — o0) or Lorentz
transformations (c is finite). All we have to do is to perform the limit ¢ — oo. For example the Newton second law is
recovered if we do the ¢ — oo limit, but Maxwell equations are only recovered if we choose c to be exactly the speed
of light in the Maxwell equations.

The reason why we write equations as tensor equations in 4D is that we can then use any coordinates (including any
time dependence), i.e. any observer, and the equations still have the exact same form. So specifying the metrics is
enough to define the coordinates (observer) and since the equations has only one form, that is all we need. If we write
equations only as tensors in 3D, we not only need to specify the (3D) metrics, but also how the observer accelerates
with respect to some (usually inertial) frame where the equations (let’s say Newton law) is defined and we then need
to transform all the time derivatives correctly. By using tensors in 4D, all those transformations are taken care of by
the standard tensor machinery and all we need to care about is exactly one observer, defined by its metric tensor.

By choosing the correct metrics and ¢ (i.e. diag(—1, 1, 1,1) and c the speed of light), all equations are then automati-
cally Lorentz invariant. If we choose ¢ — oo (and any metric), we automatically get all equations Galilean invariant.

3.1.2 High School Formulation

The usual (high school) formulation is the second Newton’s law:

d?x

S F
T

for some particle of the mass m and position x. To determine the force F, we have at hand the Newton’s law of
gravitation:

mims

Pl =G

that expresses the magnitude |F| of the force between two particles with masses m; and mo and we also know that
the direction of the force is directly towards the other particle. We need to take into account all particles in the system,
determine the direction and magnitude of the force due to each of them and sum it up.

3.1.3 College Formulation

Unfortunately, it is quite messy to keep track of the direction of the forces and all the masses involved, it quickly
becomes cumbersome for more than 2 particles. For this reason, the better approach is to calculate the force (field)
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from the mass density function p:
V- -F=—4rGmp(t,z,y, z)
To see that both formulations are equivalent, integrate both sides inside some sphere:
/V -Fdzxdydz = —47Gme /pdxdydz
apply the Gauss theorem to the left hand side:
/V~dedydz:/F-ndS:47rr2F-n

where n = ‘—:| and the right hand side is equal to —47Gmyms and we get:

mims

Fn=-G—;

r

now we multiply both sides with n, use the fact that (F - n)n = F (because F is spherically symmetric), and we get
the traditional Newton’s law of gravitation:

mima
2

F=-G

n
r

It is useful to deal with a scalar field instead of a vector field (and also not to have the mass m of the test particle in
our equations explicitly), so we define a gravitational potential by:

F= _mv¢(t7 z,Yy, Z)

then the law of gravitation is

V2¢p = 4nGp 3.1

and the second law is:
d2
m dt2 = *qus(t,ft, Y, Z)

Note about units:

M= =m

[m] = kg
[l = kgm™®
[F] = kgms™2
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3.1.4 Differential Geometry Formulation

There are still problems with this formulation, because it is not immediatelly clear how to write those laws in other
frames, for example rotating, or accelerating — one needs to employ nontrivial assumptions about the systems, space,
relativity principle and it is often a source confusion. Fortunately there is a way out — differential geometry. By
reformulating the above laws in the language of the differential geometry, everything will suddenly be very explicit
and clear. As an added bonus, because the special and general relativity uses the same language, the real differences
between all these three theories will become clear.

We write z, y, z and ¢ as components of one 4-vector

N 8y o+

Now we need to connect the Newtonian equations to geometry. To do that, we reformulate the Newton’s second law:

d2 7 .
dtz +0909;¢ =0
by choosing a parameter \ such, that ‘527;\ = 0, so in general
A=at+b
and
L
de? dA?
o)
2z

1
Dz Tz =0
dx
d

and using the relation g7 = a we get

A2z dt \ 2
599, - —
Dz 10700 (d)\) 0

So using 2V instead of ¢, we endup with the following equations:

220
-
d2a? s dz®\?
sige () =
e 10709 ( O\ ) 0

But this is exactly the geodesic equation for the following Christoffel symbols:
Tho = 60,6 (3.2)
and all other components are zero.

In order to formulate the gravitation law, we now need to express V2¢ in terms of geometric quantities like I'g, or
R“g.s5. We get the only nonzero components of the Riemann tensor:

Rloro = =R oo, = 67 0;0k9
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we calculate the R, 3 by contracting:

Roo = RFou0 = R'oi0 = 09;0;¢

Rij =0
and we see that the Newton gravitation law is
Roo =A4rG P
R;; =0

Thus we have reformulated the Newton’s laws in a frame invariant way — the matter curves the geometry using the
equations:

RQO = 47TGp

Rij:O

from which one can (for example) calculate the Christoffel symbols and other things. The particles then move on the
geodesics:
d2z LT daf dz7
dxz TP dn dh
Both equations now have the same form in all coordinate systems (inertial or not) and it is clear how to transform them
— only the Christoffel symbols (and Ricci tensor) change and we have a formula for their transformation.

3.1.5 Metrics

There is a slight problem with the metrics — it can be proven that there is no metrics, that generates the Christoffel
symbols above. However, it turns out that if we introduce an invariant speed c in the metrics, then calculate the
Christoffel symbols (thus they depend on ¢) and then do the limit ¢ — oo, we can get the Christoffel symbols above.

In fact, it turns out that there are many such metrics that generate the right Christoffel symbols. Below we list several
similar metrics and the corresponding Christoffel symbols (in the limit ¢ — o0), so that we can get a better feeling
what metrics work and what don’t and why:

—2-26 0 0 0
B 0 1 0 0
Gpwr = 0 0 -1 0
0 0 0 1
1 _
PO()_85E¢
50 = —0yo
Foozazﬁb
=26 0 0 0
0 1 0 0
Guw 0 0 -1 0
0 0 0 -1
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P(l)ozazﬁb
FgO:_Mb
F802_2¢

—2-26 0 0 0
B 0 -1 0 0
Guw = 0 0 -1 0
0 0 0 -1
1 _
FOO—_ax¢
I%O:_yq5
F30:_82¢
—24+45-2¢ 0 0 O
- 0 100
Guw = 0 01 0
0 00 1
1 _

1—‘00_aﬂvqZS

Fgozayfls

F80:6Z¢

—c2—2¢ 0 0 0
B 0 1-2 0 0
I = 0 0 1-2 0
0 0 0 1-%

1 _

oo = 00

FgozayﬁZS

Fgo:az¢
_r2

2-26 0 0 0

0 10 0
Guw 0 01 0
0 00 1
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1—‘(1)0 = 0,0

Fgo = ay¢

Fgo =0,¢

c2—2¢6 0

0 1

G = 0 0
0 0

1 _

Lop = 020

Fgo = ay¢

Fgo = 8Z¢

-2 0
0 c?

G = 0 0
0 0

Fgo = ay¢

Fgo =09

2—2¢ 0

0 1

I =1 o 0
0 0

1 _

oo = 0x0

F%O = ay¢

Fgo =09

2—2¢ 0

0 1

G = 0 0
0 0

g = —0

o= o o
— o O O

o= o o
— o O O

o= O O
— oYY o

O R OO
— o Qo

3.1.

Newtonian Physics
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Fgo = ay¢

Fgo =0,¢
2—-2¢6 0 0 0
B 0 1 0 5
G = 0 01 0
0 0 0 1

F(l)o = 5x¢ - 5az¢

Fgo = ay¢

Fgo =09
-2 0 5 0
. 0 1 0 O
G = 0 01 0
0 0 0 1

F(1J0 = 00

F[Q)O = ay¢

Fgo =0,¢

If we do the limit ¢ — oo in the metrics itself, all the working metrics degenerate to:

oo 0 0 O
_ 0 1 00
Imw=1 0 o010
0 0 01
(possibly with nonzero but finite elements go; = g0 # 0). So it seems like any metrics whose limit is
diag(+00,1, 1, 1), generates the correct Christoffel symbols:
F(%0 =029
Fgo =0y9

Fgo =09

but this would have to be investigated further.
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Let’s take the metrics diag(—c? — 2¢, 1 — 72’ 1— C—Q, 1— —) and calculate the Christoffel symbols (without the limit
c — 0):
_ Zoltay.2) 2 o(tay.2) _ Fetay.z)  Zotayz)
—2¢(t,z,y,2)—c? —20(t,2,y,2) —c? —2¢(t,x,y,2)—c? —24(t,z,y,2)—c?
o 37¢(t7$,y72) md’(t@ayvz) 0 0
e — —2¢(t,xy,2)—c? 2 (=2¢(t,2,y,2)—c?)
v %d)(t,z,y,z) 0 8%q5(t,:v,y,z) 0
o —2¢(t,x,y,2)—c? c2(=2¢(t,x,y,2)—c?) R
= o(tmy,z) 0 0 51 90(tz,y,2)
—2¢(t,2,y,2)—c? c2(—2¢(t,x,y,2)—c?)
5%¢(t7$-,yvz) _ oL ¢(t ) 0 O
1-2 ¢(t,:2~yy2) 02( 2<1>(f x, y Z))
Zo(t,z,y.2) 2 (L) 7y 9(tzy,2) 2 o(tay.2)
o 62(1_2¢<t,:2,‘y,z>) (.2( Y1 CRTRTND) z)) 762(1_2 ¢(t,:2,y,z>) o 62(1_2¢<t,:éy,z>)
Iz 0 (31; qﬁ(t,m,y z) %g{)(t,r,y,z) 0
CQ( 2¢(t1~ Y, Z)) 02(1_2 gb(t.:éy,z))
0 __ Bty 0 _Bedlteya)
02(1 2<¢>(’£L yZ)) C2<1_2</>(t=:=y,2))
2 o(ta,y,2) 0 _ Feltmy,2) 0
1—2 ¢(t,:2,y,z) (.2(1 2 ¢(t ki y z))
0 %45@7-"571!»2) BT ¢(t,x y z) 0
F2 B 02(1_2 ¢(t,:,'y»2)) T2 1 2¢(t Ty, Z))
py Fot2,y,2) Zo(t2.y,2) & o(ta,y.2) 52 o(t2,y,2)
- 02(1_2¢<t,:,y,z>) _02(1_2 <¢><t,:2,y,z)) _cz(l 2¢>(t Ty, z)) ) 1 2¢><t u.2))
0 0 _ Zelte y z) 5y Py, Z)
C2( 2¢>(t«vyZ)) (1 2d>(tzy2))
éﬁs(tvmvyvz) 0 0 _ Bt ¢(t 1Ys2)
1_92¢t.z,y,2) 02(1 PRGNS 2))
0 Zo(t,w,y,2) 0 Aot ,2)
I‘3 c2(1—2 ¢(t,:2,y»2)) 02(1 PEICERTS 2))
pv 0 0 qb(t z,Y,2) . ay o(t,x yvz)
(,2(1 2¢(t1~yz)) (/2(1 2¢(t»LyZ))
Fo(tz,y,2) A etay,z) -~ o(t,7,y,2) _ Zetay,z)
62(1_2W) 02(1_2W) (1 QM) 02(1 2‘15“11!2))
By taking the limit ¢ — oo, the only nonzero Christoffel symbols are:
1
Loo = 020
00 = 0yo
Fgo =09
or written compactly:
oo =0Y0;¢
So the geodesics equation
d2z n da? dz _
e T
becomes
d2z0°
dA2
2
2zt d:co
di2 +670;¢ =0
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From the first equation we get x° = a\ + b, we substitute to the second equation:

1 d?z?

e 1070i0=0
or
d2a? ii
d(x0)2 +670;6=0
A%zt .
gz = 0709

So the Newton’s second law is the equation of geodesics.

3.1.6 Obsolete section

This section is obsolete, ideas from it should be polished (sometimes corrected) and put to other sections.

The problem is, that in general, Christoffel symbols have 40 components and metrics only 10 and in our case, we cannot
find such a metrics, that generates the Christoffel symbols above. In other words, the spacetime that describes the
Newtonian theory is affine, but not a metric space. The metrics is singular, and we have one metrics diag(—1, 0,0, 0)
that describes the time coordinate and another metrics diag(0, 1, 1, 1) that describes the spatial coordinates. We know
the affine connection coefficients I'g. , so that is enough to calculate geodesics and to differentiate vectors and do
everything we need.

However, for me it is still not satisfactory, because I really want to have a metrics tensor, so that I can easily derive
things in exactly the same way as in general relativity. To do that, we will have to work in the regime c is finite and
only at the end do the limit ¢ — oo.

We start with Einstein equations:

871G
Ra,@ - %Rgaﬂ = CTTaﬂ

or

&G
Rap = CT(Taﬁ — 5T ap)

87G
Rog =2

ot (Ta,@ - %T)

The energy-momentum tensor is
TP = pUU”

in our approximation U*? ~ 0 and U ~ ¢, so the only nonzero component is:

T — pe
T = pc
and
;. 8rG ArG
R, o (—3pc®) = — 2
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G 4G
ROO = e (%pCQ) = 2
We need to find such a metric tensor, that
RO = =%
0 — C2

then we get (3.1).

There are several ways to choose the metrics tensor. We start We can always find a coordinate transformation, that
converts the metrics to a diagonal form with only 1, 0 and —1 on the diagonal. If we want nondegenerate metrics, we
do not accept O (but as it turns out, the metrics for the Newtonian mechanics is degenerated). Also, it is equivalent if
we add a minus to all diagonal elements, e.g. diag(1,1,1,1) and diag(—1, —1, —1, —1) are equivalent, so we are left
with these options only: signature 4:

gy = diag(1,1,1,1)
signature 2:

Guv = diag(_17 1a 13 1)

g = diag(1,—-1,1,1)

gu = diag(1,1,—-1,1)

g = diag(1,1,1,-1)
signature 0:

Guv = diag(flv -1,1, 1)

gy = diag(—1,1,-1,1)

gu = diag(—1,1,1,-1)

No other possibility exists (up to adding a minus to all elements). We can also quite easily find coordinate transforma-
tions that swap coordinates, i.e. we can always find a transformation so that we first have only —1 and then only 1 on
the diagonal, so we are left with: signature 4:

g = diag(1,1,1,1)
signature 2:
gu = diag(—1,1,1,1)
signature 0:
gy = diag(—1,-1,1,1)

One possible physical interpretation of the signature O metrics is that we have 2 time coordinates and 2 spatial coor-
dinates. In any case, this metrics doesn’t describe our space (neither Newtonian nor general relativity), because we
really need the spatial coordinates to have the metrics either diag(1,1,1) or diag(—1, —1, —1).
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So we are left with either (this case will probably not work, but I want to have an explicit reason why it doesn’t work):

or (this is the usual special relativity)

100 0
o1 0 0
I =10 0 1 0
0001
1.0 0 0
o 100
9w =10 0 1 0
0 0 0 1

It turns out, that one option to turn on gravitation is to add the term — i—‘f]l to the metric tensor, in the first case:

1-2 0 0 0
0 1-2 0 0
=19 0 1-2%2 0
0 0 0o 1-%
and second case:
1-2 0 0 0
B 0 1-2 0 0
Iuw 0 0 1-2 o
0 0 0o 1-%

The second law is derived from the equation of geodesic:

in an equivalent form

d2z® , dzf dx”

T T T

dU~
dr

a 118 —
+T4,U°U7 =0

The only nonzero Christoffel symbols in the first case are (in the expressions for the Christoffel symbols below, we set
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prv T

w T

w =

prv T

and in the second case, only ng is different:

pyv

Now we assume that 9, ~ ¢ < 2, so all '3, are of the same order. Also |U!| < |U°] and U° = ¢, so the only

nonnegligible term is

Fo(tr,y,2)

_ Zo(tm,y,2)

2 6(t2,5,2)

& 8(t,2,y,2)

T 1-2¢(t,a,y,2) 1-2¢(t,w,y,2)  1-2¢(t,x,y,z)  1-2¢(t,a,y,2)

2 o(tmy,z) 2 o(t,x,y,2) 0 0
1-2¢(t,2,y,2) 1-2¢(t,2,y,2)

_ %Mt%%z) 0 %q&(t,w,y,z) 0
1-2¢(t,z,y,2) 1-2¢(t,2,y,2)

_ %(ﬁ(t,x,y,z) O O %¢(t7$7972)
1-2¢(t,2,y,2) 1-2¢(t,2,y,2)
%(z)(tVl"yVZ) _ %d}(t,x,y,z) 0 0
1-2¢(t,2,y,2) 1-2¢(t,2,y,2)

_ Betayz) Loty Fotwwz) Loty
1-2¢(t,2,y,2) 1-2¢(t,2,y,2) 1-2¢(t,2,y,2) 1-2¢(t,2,y,2)

2 o(tzy.2)

2 o(t,x,y,2)

0 T 1-2¢(t,x,y,2) 1-2¢(t,x,y,2) 0
0 o 5%@5(15-,17?472) 0 0%¢(t,m,y,z)
1-2¢(t,x,y,2) 1-2¢(t,x,y,2)
Zo(tzy,2) 0 _ Foltay.z) 0
1-2¢(t,z,y,2) 1-2¢(t,2,y,2)
0 %¢(tvz1y7z) . %d)(t,z,y,z} 0
1-2¢(t,x,y,2) 1-2¢(t,x,y,2)
26(te,,2) 2 §(t,2,9,2) 2 6(t,3,,2) 2 5(tay.2)
1-2¢(t,x,y,2) 1-2¢(t,x,y,2) 1-2¢(t,x,y,2) 1{)—2¢(t,x,y,z)
0 0 L Zoltwys)  &ehey)
1-2¢(t,x,y,2) 1-2¢(t,x,y,2)
%¢(tv$1%2) 0 0 _ %¢(t,m,y,z)
1-2¢(t,2,y,2) 1-2¢(t,x,y,2)
0 (%qﬁ(t,m,y,z) 0 _ %gb(t,m,y,z)
1-26(t,x,y,2) 1-2¢(t,x,y,2)
0 0 2 8(t,z,y,2) D)
1-2¢(t,x,y,2) 1-2¢(t,x,y,2)
_ Botayr) Loty Fotawz) Loty
1-2¢(t,x,y,2) 1-2¢(t,x,y,2) 1-2¢(t,x,y,2) 1-2¢(t,x,y,2)

Z(t,z,y,2)

Zo(t,m,y,2)

& o(ta,y,2)

£ o(t,2,y,2)

14+2¢(t,,,2)
75 6(,7,y,2)

1+20(¢,2,y,2)
2 o(t,2,,2)

1420(%,2,,2)
2 6(t,,9,2)
14+2¢(t,z,y,2)
£ o(t,x,y,2)
14+2¢(t,z,y,2)

T 124(tw,y,2)
0

0

dU~
dr

Substituting for the Christoffel symbol we get

Ut 899;%
=

dr

o

N
e

and multiplying both sides with m:

dU?

de

1+2¢(t,,y,2)
0

_ Zotay,2)
1+2¢(t,2,y,2)

0

+ L5 (U%)? =0

= —m8j¢ (Sij

1+2¢(t,,y,2)
0

0

Lty
14+26(t,2.y.2)

¢ ==510,0) (1+0(5)) = =500 +0 <<¢)>

which is the second Newton’s law. For the zeroth component we get (first case metric)

mdUO B
dr

=m

d¢
dr
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second case:

dv’ _ dg

"ar T "ar

Where mU° = p° is the energy of the particle (with respect to this frame only), this means the energy is conserved
unless the gravitational field depends on time.

To summarize: the Christoffel symbols (3.2) that we get from the Newtonian theory contain ¢, which up to this point
can be any speed, for example we can set ¢ = 1 ms~!. However, in order to have some metrics tensor that generates
those Christoffel symbols, the only way to do that is by the metrics

2¢

diag(—1,1,1,1) — —1
c

2
then calculating the Christoffel symbols. If we neglect the terms of the order O ( (;%) ) and higher, we get the

Newtonian Christoffel symbols (3.2) that we want. It’s clear that in order to neglect the terms, we must have |¢| < 2,
so we must choose ¢ large enough for this to work. To put it plainly, unless c is large, there is no metrics in our
Newtonian spacetime. However for c large, everything is fine.

3.1.7 Intertial frames

What is an inertial frame? Inertial frame is such a frame that doesn’t have any fictitious forces. What is a fictitious
force? If we take covariant time derivative of any vector, then fictitious forces are all the terms with nonzero Christoffel
symbols. In other words, nonzero Christoffel symbols mean that by (partially) differentiating with respect to time, we
need to add additional terms in order to get a proper vector again — and those terms are called fictitious forces if we
are differentiating the velocity vector.

Inertial frame is a frame without fictitious forces, i.e. with all Christoffel symbols zero in the whole frame. This is
equivalent to all components of the Riemann tensor being zero:

R%~5 =0

In general, if R¥g,5 # 0 in the whole universe, then no such frame exists, but one can always achieve that locally,
because one can always find a coordinate transformation so that the Christoffel symbols are zero locally (e.g. at one
point), but unless 2% s = 0, the Christoffel symbols will not be zero in the whole frame. So the (local) inertial frame
is such a frame that has zero Christoffel symbols (locally).

What is the metrics of the inertial frame? It is such a metrics, that I'“ 3, = 0. The derivatives ,,I'“ 3, however doesn’t
have to be zero. We know that taking any of the metrics listed above with ¢ = const we get all the Christoffel symbols
zero. So for example these two metrics (one with a plus sign, the other with a minus sign) have all the Christoffel
symbols zero:

2 0 0 0
o 100
Iww=1 "0 0 1 0

0 0 0 1

Such a metrics corresponds to an inertial frame then.

What are the (coordinate) transformations, that transform from one intertial frame to another? Those are all transfor-
mations that start with an inertial frame metrics (an example of such a metrics is given above), transform it using the
transformation matrix and the resulting metrics is also inertial. In particular, let z# be inertial, thus g,,,, is an inertial
metrics, then transform to z’* and ¢':

, oz Oxz" ox\ " ox
Jop = Gpra geB 9 =\ o ) I\ o
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if we denote the transformation matrix by A:

oxH
Ao = ox'e

then the transformation law is:
g = AT gl

Now let’s assume that ¢’ = g, i.e. both inertial systems are given by the same matrix and let’s assume this particular
form:

+c2 0 0 0
;o 1 0 1 0 0
G =9 ="1"0 0 1 0
0 0 01
(e.g. this covers almost all possible Newtonian metrics tensors).
3.1.8 Lorentz Group
The Lorentz group is O(3,1), e.g. all matrices satisfying:
g=ATgA (3.3)

with g = diag(—c?,1,1,1). Taking the determinant of (3.3) we get (det A)? = 1 or det A = £1. Writing the 00
component of (3.3) we get

—62 _ _C2(A00)2 + (A01)2 + (A02)2 + (A03)2
or
1
(A00)2 =1+ 672 ((A01)2 =+ (A02)2 + (A03)2)
Thus we can see that either A% > 1 (the transformation preserves the direction of time, orthochronous) or A%, < —1

(not orthochronous). Thus we can see that the O(3, 1) group consists of 4 continuous parts, that are not connected.

First case: elements with det A = 1 and A% > 1. Transformations with det A = 1 form a subgroup and are called
SO(3, 1), if they also have A%, > 1 (orthochronous), then they also form a subgroup and are called the proper Lorentz
transformations and denoted by SO (3, 1). They consists of Lorentz boosts, example in the z-direction:

1 2
. c 0 0
7 V3
_ UC 1 © 0 0
e R
0 0 1 0
0 0 0 1
which in the limit ¢ — oo gives
1 0 0 0
w _|-v 1.0 0
Aty = 0 0 1 0
0 0 0 1
and spatial rotations:
1 0 0 0
0 1 0 0
Ri(9) = 0 0 cos¢ sing
0 0 —sing coso
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1 0 0 0

0 cos 0 sin
Ba(9)=10 0 ’ 10 ’
0 —sing 0 cos¢
1 0 0 0
|10 cos¢ sing O
Rs(9) = 0 —sing cos¢ 0
0 0 0 1

(More rigorous derivation will be given in a moment.) It can be shown (see below), that all other elements (improper
Lorentz transformations) of the O(3, 1) group can be written as products of an element from SO™ (3,1) and an element
of the discrete group:

{1, P, T, PT}

where P is space inversion (also called space reflection or parity transformation):

1 0 0 0

0 -1 o0 0

P= 0 0 -1 0

0 0 0 -1
and T is time reversal (also called time inversion):

-1 0 0 O
0 1 0 0
= 0 0 10
0 0 0 1

Second case: elements with det A = 1 and A%y < —1. An example of such an element is PT". In general, any product
from SO (3,1) and PT belongs here.

Third case: elements with det A = —1 and A% > 1. An example of such an element is P. In general, any product
from SO (3,1) and P belongs here.

Fourth case: elements with det A = —1 and A%, < —1. An example of such an element is 7". In general, any product
from SO (3,1) and T belongs here.

Example: where does the reflection around a single spatial axis (¢, x,y,z) — (¢, —x,y, z) belong to? It is the third

case, because the determinant is det A = —1 and the 00 element is 1. Written in the matrix form:
1 0 00 1 0 0 0 1 0 0 0
A 0 -1 0 0] [0 -1 O 0 01 0 01 _
“{o o 1 0] {0 0 -1 0 0 0 -1 0]
0O 0 0 1 0 0 0 -1 0O 0 0 -1
1 0 0 0 1 0 0 0
0 -1 0 0 0 1 0 0
“10 0 -1 o0 0 0 cosm sinwm | PR, ()
0 0 0 -1 0 0 —sinm cosw

So it is constructed using the R; element from SO™ (3, 1) and P from the discrete group above.

We can now show why the decomposition O(3,1) = SO™(3,1) x {1, P, T, PT} works. Note that PT = —1. First
we show that SO(3,1) = SO™(3,1) x {1, —1}. This follows from the fact, that all matrices with A% < —1 can be
written using —1 and a matrix with Ay > 1. All matrices with det A = —1 can be constructed from a matrix with
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det A = 1 (i.e. SO(3, 1)) and a diagonal matrix with odd number of -1, below we list all of them together with their
construction using time reversal, parity and spatial rotations:

diag(—1,0,0,0) =T
diag(0,—1,0,0) = PRy ()
diag(0,0,—1,0) = PRy(m)
diag(0,0,0,—1) = PR3(m)
diag(0,-1,-1,-1)=P
diag(~1,0,—1, 1) = TRy (r)
diag(—1,—1,0,—1) = TRy (m)
diag(—1,-1,-1,0) = TRs(m)

But R; () belongs to SO (3, 1), so we just need two extra elements, 7' and P to construct all matrices with det A =
—1 using matrices from SO(3, 1). So to recapitulate, if we start with SO™ (3, 1) we need to add the element PT = —1
to construct SO(3, 1) and then we need to add P and T to construct O(3, 1). Because all other combinations like
PPT = T reduce to just one of {1, P,T, —1}, we are done.

The elements from SO+(3, 1) are proper Lorentz transformations, all other elements are improper. Now we’d like to
construct the proper Lorentz transformation matrix A explicitly. As said above, all improper transformations are just
proper transformations multiplied by either P, T" or PT), so it is sufficient to construct A.

We can always write A = el then:
det A =detel =Tl =1

so Tr L = 0 and L is a real, traceless matrix. Rewriting (3.3):

g=ATgA
A71 _ gflATg
el — gfleLTg _ eg*ILTg

~L=g"'L"yg

—gL = (gL)"
The matrix gL is thus antisymmetric and the general form of L is then:

0 Lox Lo2 Los
c? c2 c2

Loy 0 Lo Ly3
Loo —Lq2 0 Lo
Loz —Liz —Laz 0

One can check, that gL is indeed antisymmetric. However, for a better parametrization, it’s better to work with a metric
diag(—1,1,1,1), which can be achieved by putting c into (ct, x, y, z), or equivalently, to work with z* = (¢, z,y, 2)
and multiply this by a matrix C' = diag(c,1,1,1) to get (ct,x,y,2). To get a symmetric L, we just have to do
Cz' = LCz, so to get an unsymmetric L from the symmetric one, we need to do C~1LC, so we get:

0 G G G

L=C! g 53 o 2| e=—ip-L-ic-cTMC

(3 —p2  ©1 0
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We have parametrized all the proper Lorentz transformations with just 6 parameters (i, (2, (3, ©1, @2 and @3. The
matrices L and M are defined as:

00 0 0
oo o o
Li==ifg o o 1
00 -1 0
000 0
o 0o 0o -1
La==i1g 0 0 o
010 0
0 0 0 0
o o 10
Ls==iy 1 ¢ o
0 0 0 0
010 0
11 0 0 0
Mi=ilg o0 0 0
000 0
001 0
1o 0o 0 o
My=ily o o o
000 0
00 0 1
000 0
Ms=i1g 0 0 0
100 0

Straightforward calculation shows:

[Li, Lj] = deijn L
[Li, M]} = Z'EijkMk

[Mi, ]\/[j} = —ieijkLk
The first relation corresponds to the commutation relations for angular momentum, second relation shows that M
transforms as a vector under rotations and the final relation shows that boosts do not in general commute.
We get:

A= eficp-LfiC-C_lMC — 1 L—i¢M
As a special case, the rotation around the z-axis is given by ¢ = (0,0, ) and { = 0:

)

1 0 0
i 0 cos sin
— —ieLs 1 T2 T 2 _ ¥ ¥
A=e 1— L5+ iLssinp+ Lycosy 0 —sing coso
0

0 0

_ o O O
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The boost in the a-direction is ¢ = 0 and ¢ = (¢, 0,0), e.g.:

A=Cte MO =071 (1 — Mf + iM; sinh ¢ + M7 cosh() C =

cosh( —sinh¢ 0 0 cosh ¢ —% sinh¢ 0 O

o sinh¢ cosh¢ 0 0 c—1|"¢ sinh( cosh¢ 0 0O
0 0 10 0 0 10

0 0 0 1 0 0 0 1

from the construction, —co < ¢ < oo, so we may do the substitution { = %atanh (%), where —c < v < c¢. The
inverse transformation is:

cosh( =

Ji-g

and we get the boost given above:

! 2 0 0
cosh ¢ f% sinh¢ 0 0 \/1_ v2 12
| —¢sinh¢  cosh¢ 0 0 — 1 0 0
A=1 o 0o 1o~ Vi-E Vi-sm
0 0 0 1 0 0 1 0
0 0 0 1
Adding two boosts together:
1 3 1 oz
——=< 0 0 ——= 0 0
s R 3 ViZ
_ u 1 00 _ v 1 0 0
AwAW = | i i g VeE -
0 0 1 0 0 0 0
0 0 0 1 0 0 0 1
1 o
——= 0 0
EhE
w 1
— 0 0
-|E =
0 0 0
0 0 0 1
with
u-+v
w —
1+ %

3.1.9 O(4) Group

The group of rotations in 4 dimensions is O(4), e.g. all matrices satisfying:

g=ATgA (34
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with ¢ = diag(c?,1,1,1). Taking the determinant of (3.4) we get (det A)?> = 1 or det A = +1. Writing the 00
component of (3.4) we get

02 — 02<A00)2 + <A01)2 + <A02)2 + <A03)2

or
(AOO)2 -1 C% ((A01)2 + (A02)2 + (A03)2)

Thus we always have —1 < A% < 1. That is different to the O(3, 1) group: the O(4) group consists of only 2
continuous parts, that are not connected. (The SO(4) part contains the element —1 though, but one can get to it
continuously, so the group is doubly connected.)

Everything proceeds much like for the O(3, 1) group, so gL is antisymmetric, but this time g = diag(c?,1,1,1), so
we get:

0 _ Lo _Lo2 _ Logs
c2 c2? c2?
Loy 0 L Ly
Los —Li 0 L3

Loz —Liz —Los 0
and so we also have 6 generators, but this time all of them are rotations:
A=C e ale

with a = 1,2, 3,4, 5, 6. The spatial rotations are the same as for O(3, 1) and the remaining 3 rotations are (¢, z), (¢, y)
and (¢, z) plane rotations. So for example the (¢, ) rotation is:

1

cospy sinpg 0 0 COS Py ;sin<p4 0 0
1| —singpy cospy 0 O | —csingpg  cosgpy 0 0O
A=C 0 0 10 ¢= 0 0 10
0 0 0 1 0 0 0 1
Now we can do this identification:
sin ¢y = ——e
LVITr
1
COS Py = ———
bVITEP
so we get the Galilean transformation in the limit ¢ — oo:
1 2
vraE v 00 1 000
- 1 —v 1 0 0
A=|"ymmr v 00 -
0 01 0
0 0 10 0 0 0 1
0 0 0 1
Adding two boosts together:
1 oz 1 =
< 0 0 < 0 0
Vit e Vits o i
u 1 1
- 0 0 — 0 0
AwAW = | “VE ViE A=
0 0 10 0 0 10
0 0 01 0 0 0 1
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1 %5
< 0 0
Vit e
= 2 L 2 0 O
= +2y 1+
0 0 1 0
0 0 0 1
with
u+v
w = uv

However, there is one peculiar thing here that didn’t exist in the O(3, 1) case: by adding two velocities less than ¢, for
example u = v = ¢/2, we get:

c 4c <
w= =5 >cC
1-3 3
(as opposed to w = 1j1 = % < cin the O(3, 1) case). So one can get over c easily. By adding u = v = % together:
4
8c
=5 24c
3
w = =" <0
11— 7
(as opposed to w = 1?& = % > 01in the O(3, 1) case). So we can also get to negative speeds easily. One also needs
9

to be careful with identifying cos ¢4 = \/ﬁ, because for ¢4 > 7/2 we should probably set cos 4 = — \/ﬁ

All of this follows directly from the structure of SO(4), because one can get from A% > 0 to A% < 0 continuously
(this corresponds to increasing (4 over 7/2). In fact, by adding two speeds u = v > ¢(v/2 — 1), one always gets
w > c. Butif c(\/§ — 1) = 0.414c is larger than any speed that we are concerned about, we are fine.

3.1.10 Proper Time

Proper time 7 is a time elapsed by (physical) clocks along some (4D) trajectory. Coordinate time ¢ is just some time
coordinate assigned to each point in the space and usually one can find some real clocks, that would measure such a
time (many times they are in the infinity). To find a formula for a proper time (in terms of the coordinate time), we
introduce a local inertial frame at each point of the trajectory — in this frame, the clocks do not move, e.g. z, y, z is
constant (zero) and there is no gravity (this follows from the definition of the local inertial frame), so the metric is just
a Minkowski metric.

For any metrics, ds? is invariant:
ds? = Guvdatdx”

so coming to the local inertial frame, we have z, y, z constant and we get:

ds? = goodr?
s0:
ds?
dr = &
goo
since we are still in the local inertial frame (e.g. no gravity), we have gog = —c? (depending on which metrics we take
it could also be +¢?), so:
ds?
dr = - CT
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This formula was derived in the local inertial frame, but the right hand side is the same in any inertial frame, because
ds? is invariant and c too. So in any frame we have:

ds? Gupdarda
dr = V e \/ e

We’ll explain how to calculate the proper time on the 1971 Hafele and Keating experiment. They transported cesium-
beam atomic clocks around the Earth on scheduled commercial flights (once flying eastward, once westward) and
compared their reading on return to that of a standard clock at rest on the Earth’s surface.

We’ll calculate it with all the metrics discussed above, to see the difference.

Weak Field Metric

Let’s start with the metrics:

d52<1+2c(f)c2dt2 (1%) (d2® + dy* + d2?)

Then:
(T [ )9 122 az = L (1220 (a2 + dy? + 22
TAB—/A T—/A T2 / (+02> —C<—c)(m+y+z)
B B 2¢ 1 2¢ dz\ 2 dy 2 dz\> _
e (-2) -5 (-2 () () (%)) -
_ (7 20\ 1 2¢
a2 a2
where

dz\ 2 dy 2 dz\?
2 had _J _
M ‘(dt) +(dt) *(dt)

is the nonrelativistic velocity. Then we expand the square root into power series and only keep terms with low powers

of c:
B
TM_/&¢1+1QM)WAd4H;;w@
B 1 /1
TAB:/A dt(102<2|V2¢>>)

Now let V;, = V,(t) be the speed of the plane relative to the (rotating) Earth (positive for the eastbound flights,

negative for the westbound ones), Vg = Q’TR@ = the surface speed of the Earth, then the proper time for the clocks on

the surface is:
B
1 /1,
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and for the clocks in the plane

7_/ABdt (1012<;(Vg+v@)2¢>)

then the difference between the proper times is:

1 [P 1 ) 1, 1 [P 1
T—T@ZATZC*Q/A dt (=5 (Vg +Ve) + o+ Vs — ¢e ZCj/A dt (¢ —de — 5Vy(Vy +2Va)

but ¢ — ¢g = gh, where h = h(t) is the altitude of the plane, so the final formula is:

1 [B 1
AT = . dt { gh — 5 Vy(Vy +2Ve)
Let’s evaluate it for typical altitudes and speeds of commercial aircrafts:

Rg = 6378.1km = 6.3781 - 10°m

2rRg 1 27rRs 1 276.3781-105m m
Vi — g — e 463.83 —
@ 24 h  24-3600 s 24-3600 s s
km m
= 870 —— = 241.67 —
Vy =870 - 67—
h = 12km = 12000 m
2 27 6.3781 - 106
p = 2rfe _ 2m63T8L- 107 © oot 415 ~ 461

v, 241.67

c=3-1082
s
For eastbound flights we get:

t 1
Ar=— (gh — 5ValVy + zv@)> = —4.344-10"%s = —43.44ns

and for westbound flights we get:

t 1
Ar <gh — VoV — 21/'@)) = 3.6964- 10~ 7s = 369.63ns

T2
By neglecting gravity, one would get: eastbound flights:

t

1
AT = = (_QVQ(V-" + QV@)) = —260.34ns

and for westbound flights:

t (1
A=t (Qvg(vg - 2\/@)) — 152.73ns

By just taking the clocks to the altitude 12km and staying there for 46 hours (without moving with respect to the
inertial frame, e.g. far galaxies), one gets:

ht
Ar =22 — 216.90ns
C
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Rotating Disk Metric

The rotating disk metrics is (taking weak field gravitation into account):

2 2
ds? = — (1 + o _w (z + y2)> Adt? + (do? + dy? + dz?) — 2wy dzdt + 2wz dydt

e 2
Then:
B B
ds2
A A ¢
B 2¢  w? 1 2wy 2wx
:/ 1+ = — (224 y?) ) dt? — < (da? + dy? + d2?) + —- dedt — —— dydt =
A 2 2 c2 c? c?
B
290  w? 1 2wy dx 2wz dy
= diy/ {1+ = — =22 +¢?) | — 5| VIP+ — — — — —
/A \/( +02 02(1: —l—y)) 02| *+ ¢ dt ¢ dt
where

dz\? dy 2 dz\?
2 _ (4T il hid
ve-(a) < (@) + (@)

is the nonrelativistic velocity. Then we expand the square root into power series and only keep terms with low powers

of c:
B
10} 1 5 wydr wzxdy
= dt |14+ =5 - —|V —_ = - = =
TAB /A < Jch 202‘ "+ 2 dt 2 dt

SO

B
_ 1 /1, 9 dz dy
TAB—/A dt (1 =2 <2V| ¢ —wy a + wx dt))

Now as before let V, = V() be the speed of the plane (relative to the rotating Earth, e.g. relative to our frame),

Vo = ZT;IZ‘B % the surface speed of the Earth, so wRg, = Vg . For the clocks on the surface, we have:

QCZR@
y=0
z=0

SO
dx_%_dz

- -2 _0
dt dt dt
V[*=0

then the proper time for the clocks on the surface is:

g = /ABdt (1 - C% (—¢@)>
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and for the clocks in the plane we have:

x = (Rg + h) cos
y = (Rg + h)sin Qt

z=0
where  is defined by Q(Rg + h) =V, so

dx .
i —(Rg + h)Qsin Ot
dy
i (Rg + h)Qcos Ot
dz
T 0

IV = Q*(Rg + h)?
Wy = —wQ(Rg + h)?sin? Qt

wr—> = wQ(Rg + h)? cos? Qt

and

e [ (1= 5 (320 + 7 - o wnia ) )

A

then the difference between the proper times is:

1 (" 1
T—T@:ATZ—/ dt(—QQQ(R@-I-h)Q—wQ(R@+h)2+¢_¢®>:

(12 A

1 [P 1, h
:g " dt —5%—‘/@% 1+R7€D +¢—¢@ ==

1 (B 1 h
:E/A dt(qs—qs@—QVg (Vg+2veB (1+R@>>>

but ¢ — ¢g = gh, where h = h(t) is the altitude of the plane and we approximate

so the final formula is the same as before:
1 (B 1
AT = — dt | gh — ZV4(Vy +2Vg)
C A 2

2
Note: for the values above, the bracket (1 + %) = 1.00377, so it’s effect on the final difference of the proper times

is negligible (e.g. less than 1 ns). The difference is caused by a slightly vague definition of the speed of the plane, e.g.
the ground speed is a bit different to the speed relative to the rotating Earth (this depends on how much the atmosphere
rotates with the Earth).
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Concluding Remarks

The coordinate time ¢ in both cases above is totally different. One can find some physical clocks in both cases that
measure (e.g. whose proper time is) the particular coordinate time, but the beauty of the differential geometry approach
is that we don’t have to care about this. ¢ is just a coordinate, that we use to calculate something physical, like a proper
time along some trajectory, which is a frame invariant quantity. In both cases above, we got a different formulas for the
proper time of the surface clocks (and the clocks in the plane) in terms of the coordinate time (because the coordinate
time is different in both cases), however the difference of the proper times is the same in both cases:

1 [P 1
AT:C—Z ’ dt ghfivg(vg+2v@)

There is still a slight difference though — the ¢ here used to evaluate the integral is different in both cases. To do it
correctly, one should take the total time as measured by any of the clocks and then use the right formula for the proper
time of the particular clock to convert to the particular coordinate time. However, the difference is small, of the order
of nanoseconds, so it’s negligible compared to the total flying time of 46 hours.

3.1.11 FAQ

How does one incorporate the fact, that there are only two possible transformations, into all of this? For more
info, see: http://arxiv.org/abs/0710.3398. Answer: in that article there are actually three possible transformations,
K < 0 corresponds to O(4), K > 0to O(3, 1) and K = 0 to either of them in the limit ¢ — oc.

What is the real difference between the Newtonian physics and special relativity? E.g. how do we derive the
Minkowski metrics, how do we know we need to set ¢ = const and how do we incorporate gravity in it? Answer:
there are only three possible groups of transformations: O(4), O(3, 1) and a limit of either for ¢ — oo. All three
provide inequivalent predictions for high speeds, so we just choose the right one by experiment. It happens to be the
03, 1). As to gravity, that can be incorporated in either of them.

3.1.12 Questions Without Answers (Yet)

How can one reformulate the article http://arxiv.org/abs/0710.3398 into the language of the O(4) and O(3, 1) groups
above? Basically each assumption and equation must have some counterpart in what we have said above. I'd like to
identify those explicitely.

What are all the possible metrics, that generate the Newtonian Christoffel symbols? (Several such are given above, but
I want to know all of them) Probable answer: all metrics, whose inverse reduces to g*” = diag(0, 1, 1, 1) in the limit
¢ — oo. I would like to have an explicit proof of this though.

What is the role of the different metrics, that generate the same Christoffel symbols in the limit (¢ — 00)? Can one
inertial frame be given with one and another frame with a different form of the metrics (e.g. one with ggg = ¢ and
the other one with ggg = —c??) Possible answer: there is no transformation to convert a metrics with signature +4 to

signature +2, so one has to choose one and then all other inertial frames have the same one.

What are all the allowed transformations between intertial frames? If we assume that the inertial frames are given with
one given metrics (see the previous question), then the answer is: representation of the O(3, 1) group if goo = —c? or
O(4) group if goo = 2. But if one frame is goo = —c? and we transform to another frame with goo = 2, then it is not
clear what happens. Possible answer: one has to choose some signature and stick to it, see also the previous question.

What is the real difference between Newtonian physics and general relativity? Given our formulation of Newtonian
physics using the differential geometry, I want to know what the physical differences are between all the three theories
are.
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CHAPTER
FOUR

CLASSICAL ELECTROMAGNETISM

4.1 Maxwell’s Equations

The Maxwell’s equations are:
aaFBa = /Lojﬂ
6057587Faﬂ =0
and the Lorentz force is:
dpa

ar — e’
where:

7% = (cp,j)
Eq Eoy E3
E C C C
L 0 _By B

P ,

8= _E B 0 -B

This corresponds to:

V-E = pop
1 OE
B = jioj + = —
VX M0J+028t
V-B=0
0B

E=-—"
V x 5

4.1.1 Four Potential

The four potential is defined by:

this corresponds to:

O0A
BE=-Vo—
B=VxA
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The Maxwell’s equations can then be written as (note that the two eq. without sources are automatically satisfied by
the four potential):

0uFP = 0,(0°A” — 9 AP) = —9,0° A® = pigj°

where we have employed the Lorentz gauge 9, A% = 0.

4.2 Semiconductor Device Physics

In general, the task is to find the five quantities:
n(x,t),p(x,t), Jn(x,t), Jn(x,t), E(x, t)
where n (p) is the electron (hole) concentration, J,, (J,,) is the electron (hole) current density, E is the electric field.

And we have five equations that relate them. We start with the continuity equation:

0]
A a—f ~0
where the current density J is composed of electron and hole current densities:
J=J,+J,
and the charge density p is composed of mobile (electrons and holes) and fixed charges (ionized donors and acceptors):
p=4q(p—n+0C)

where n and p is the electron and hole concetration, C'is the net doping concetration (C' = pp — n4 where pp is the
concentration of ionized donors, charged positive, and n 4 is the concentration of ionized acceptors, charged negative)
and q is the electron charge (positive). We get:
dp On OC
v.-J Vv-J — =+ —=]=0
nt p+q<8t 8t+8t)
Assuming the fixed charges C' are time invariant, we get:

on dp
VIJ,—q¢q—=—(V-J,+q¢= ) =qR
ST ( r T ) 1
where R is the net recombination rate for electrons and holes (a positive value means recombination, a negative value

generation of carriers). We get the carrier continuity equations:

on 1

M _R+-V.J, 4.1
5t R+qV ' 4.1)
dp 1

_ = — —_— ~J

5 R qV »

Then we need material relations that express how the current J is generated using E and n and p. A drift-diffusion
model is to assume a drift current (qu,nE) and a diffusion (¢D,, Vn), which gives:

Jn = qupnE 4+ ¢D,Vn 4.2)
Jp = quppE — ¢D,Vp

where (i, 1, Dy, D), are the carrier mobilities and diffusivities.

Final equation is the Gauss’s law:

V- (eE)=p

V-(eE)=q(p—n+C) 4.3)
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4.2.1 Equations

Combining (4.2) and (4.1) we get the following three equations for three unknowns n, p and E:
on
i —R+V - (pnE)+V - (D,Vn)
9p
ot = BV (pE) + V- (D Vp)

V-(eE)=q(p—n+C)

And it is usually assumed that the magnetic field is time independent, so E = —V ¢ and we get:
on
5 = ~R—V - (upnVe) + V- (D, Vn) (4.4)
dp

5% =—R+V- (,Ufppva) +V- (DPVP)
V- (eVe) = —q(p—n+C)

These are three nonlinear (due to the terms p,,nV ¢ and p,,pV @) equations for three unknown functions n, p and ¢.

Example 1

We can substract the first two equations and we get:
ap—n) _ _ g E)+ ¢V - (D,Vp— D,V
— o = WV (pp+ pan)E) + 4V - (DpVp = Dn Vi)
V-(eE)=q(p—n+C)
and using p = q(p — n+ C) and 0 = q(upp + pnn), we get:
dp oC
— —q¢q—=—-V-(0E - (D - D,
5t 1 =V (0E)+4qV - (DpVp Vn)
V- (eE)=p

So far we didn’t make any assumptions. Most of the times the net doping concetration C' is time independent, which
gives:

% =-V.(0¢E)+¢V - (D,Vp—D,Vn)
V- (eE)=p

Assuming further D,Vp — D, Vn = 0, we just get the equation of continuity and the Gauss law:

Jdp B
E‘FV(O’E)—O
V- (eE)=p

Finally, assuming also that that p doesn’t depend on time, we get:

V-(cE)=0
V-(eE)=p
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Example 2

As a simple model, assume D,,, D, (in, iy, and € are position independent and C' = 0, R = 0:

%? = +unV - E+ p,E - Vn+ D, Von
Op

E:—uppVE—upE'VPJFDpVQP

eV-E=q(p—n)
Using E = —V¢ we get:

on 9 2
E:—unnv ¢ — Vo -Vn+ D,Vn
op _ v?2 V- Vp+ D,V?
5p = THoP ¢+ upVo-Vp+ DpVop

eV%¢ = —q(p—n)

4.2.2 Example 3

Let’s calculate the 1D pn-junction. We take the equations (4.4) and write them in 1D for the stationary state (%? =

[é) .
2 — )

0=—R— (uan¢’) + (Dnn')’
0= —R+ (uppd') + (Dpp')
(e¢')' = —q(p—n+C)

We expand the derivatives and assume that ;4 and D is constant:

Oszfﬂnn/Qb/*Mnn(b//‘i’Dnn//
0=—R+ ppp'¢’ + pppd” + Dpp”
e¢" = —qlp—n+C)

and we put the second derivatives on the left hand side:

1
n' = D—(R + pinn @ + pnne”) 4.5)
1
P = 5 (B = ppp'¢’ = pppd”)
p
¢ = *g(p* n+C)
now we introduce the variables y;:
Yo="n
Y1 = y6 =n'
Y2 =7p
ys =y =p
Yya=¢
/ /
Ys =Yy = @
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and rewrite (4.5):

1

vi = - (R+ pny1ys + iinyoys)
n
1

Y5 = o (B = ppysys — ipy2y5)
p

So we are solving the following six nonlinear first order ODE:

q
ys = —g(yz —yo+ C)

4.6)
Yo = Y1
/ 1 /
Y = D (R + pnY1ys + Mnyoy5)
n
Ys = Y3
1

Ys =

Do (R — ppysys — [pY2ys)
P

/

Ya

Ys
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CHAPTER
FIVE

FLUID DYNAMICS

5.1 Fluid Dynamics

5.1.1 Stress-Energy Tensor

In general, the stress energy tensor is the flux of momentum p* over the surface z”. It is a machine that contains a
knowledge of the energy density, momentum density and stress as measured by any observer of the event.

Imagine a (small) box in the spacetime. Then the observer with a 4-velocity u* measures the density of 4-momentum

% in his frame as:
dp®
P A pewC)
av g
and the energy density that he measures is:
E u® d
p:V:_ ‘fa:_u(xdi‘}l:ua aﬁuﬁ

One can also obtain the stress energy tensor from the Lagrangian £ = L£(7),, d,7,,2") by combining the Euler-

Lagrange equations
oL oL
— =0, | =——— 1] =0
377p ( 0 (5',, 77p) )

dL oL oL
T = g, 0 g ) O O

oL oL
=0 (7)1 B e+ 0L =

oL
=0 (g on) + 0

dc .

with the total derivative $:
x

or

oL
Oy | =——0o,n, — L5, | +0,L=0
<6(au77p) uTlp p ) i

This can be written as:

o1, + fu=0
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where
oL
T,) = ——0,n, — L5,”
w a(um,) uTlp I
fu=0.L

The Navier-Stokes equations can be derived from the conservation law:
o,T" 4+ f+ =0

To obtain some Lagrangian (and action) for the perfect fluid, so that we can derive the stress energy tensor T/
from that, is not trivial, see for example arXiv:gr-qc/9304026. One has to take into account the equation of state and
incorporate the particle number conservation V,,(nu#) = 0 and no entropy exchange V,,(nsu*) = 0 constraints.

The equation of continuity follows from the conservation of the baryon number — the volume V' that contains certain
number of baryons can change, but the total number of baryons n} must remain constant:

d(nV)

dr

dn dVv
u®(0qn)V + n(0qu*)V =0

Oa(nu®) =0

Perfect Fluids
Perfect fluids have no heat conduction (I°° = T% = 0) and no viscosity (I"J = p1), so in the comoving frame:
7% = diag(pc,p,p.p) = (p + i%) uu? + pg®”

where in the comoving frame we have g*¥ = diag(—1,1,1,1), u® = c and u* = 0, but ,U* # 0. p is the pressure
with units [p] = Nm~? = kgm ™' s (then [4] = kgm™?), p is the rest mass density with units [p] = kgm™?, and
pc? is the energy density with units [pc?] = kgm~!s2.

The last equation is a tensor equation so it holds in any frame. Let’s write the components explicitly:

1 v?
T = (p+ %) uu® —p = (p+ %) AP —p= (p62+p(1— 2))72 = (p02+p2> e
c c ~ c

. . . 1 .
T =7° = (p + %) uu' = (p + %) c'y® = = (pc® + p) v'y?
c c c
i PN i i — P yigin? ij
TV = (p+ = Ju'v! +pd? = (p+ ) v'o?y" +pd
c c
We now use the conservation of the stress energy tensor and the conservation of the number of particles:

0, T" =0 5.1
Ou(nut) =0 (5.2)
The equation (5.2) gives:

B (ny) + 9 (nv'y) = 0

Ot (nmry) + 9;(nmu'y) =0 (5.3)
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0y (nmc?y) + di(nmc*v'y) =0 (5.4)
The equation (5.1) gives for p = O:
9, T =0
00T +0,7% =0

1 2 v\ Lo i\2
O —\re +p;2 v+ 0 E(pc +p)v'y* ) =0

v? ;
([ +02) ) 0.0+ 1) %) =0 &5

We now substract the equation (5.4) from (5.5):

v? ,

) ((PCQ’Y — nmc® + pcﬂ) v) +0; ((pc*y — nmc® + py) v'y) =0

We define the nonrelativistic energy as:
v
2

4
E = pc®y —nmc® = $pv* + (p — nm)c® + O (c )

so it contains the kinetic plus internal energies. We substitute back into (5.5):
v? .
o) ((E + p627) 7) +0; (E+py)v'y) =0 (5.6)

This is the relativistic equation for the energy. Substituting nm = py — C% into (5.3):
E E ;
(2= 3)ro (2 =3) ) =0 oD

9,T" =0
oT™ +0,T7 =0

O ( : (pc* +p) vi'ﬁ) +9; ((p+ (%) vivly? +p6”') =0

For p1 = 7 we get:

c2

0, ((p + %) vi’yQ) + 9; ((p + ;%) vivin? +p5ij) =0 (5.8)

This is the momentum equation. The equations (5.7), (5.8) and (5.6) are the correct relativistic equations for the perfect
fluid (no approximations were done). We can take either (5.7) or (5.5) as the equation of continuity (both give the same
nonrelativistic equation of continuity). Their Newtonian limit is:

Oup + 0i(pv') = 0
O (pv*) + 05 (pv*'v? +ps) =0
HE +9; (v (E+p)) =0
those are the Euler equations, also sometimes written as:

ap B

a—i—V-(pV)—O
8(éotv) + V- (pvw)+Vp=0
OF
5 TV (v(E+p)=0
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Energy Equation

The energy equation can also be derived from thermodynamic and the other two Euler equations. We have the follow-
ing two Euler equations:

Oip + Bi(pu’) = 0

poyu’ + pujajui + (5ij8jp =0
We’ll need the following formulas:

Oy (usu®) = (Opuy)u’ + udpu’ = (8tui)5ijuj + u; Ot =
= (5tu7;5ij)uj + u; O’ = (3tuj)uj + w;0pu’ = 2u;0,u°
9, (wiu') = 2u;0u

Oip = —0,(pu’)
—u0;p + 9y (pU) =

at'l.l/l = —ujajul —

d
= —2 0w+ (V) =

_dp _
T +0:(pU +p) =

dp d j B

it a(pUer) u’ 0;(pU +p) =

_ dp dp P d P j _
= dt+dt(U+p>+pdt(U+p w0 (pU +p) =
dp

2) (U + )0~ 0+ ) =

_|,4 py_dp PN VAP o il 8o o) —

= {pdt (U+p> dt} + <U+p) {dt + pdju 0;(pUw + pu’) =
= —0;(pUn’ + pu?)

1 1
O:dQ:TdSsz—i—pdV:d(U—i-pV)—Vdpzd(U—i—Z;) — dp=at - ~dp
»

where V' = 1 is the specific volume and H = U + % is entalphy (heat content).
Then:

O FE =
= i(3pusu’ + pU) =

— 1
— =

w0 (pul) — puju? djut — u; 67 0;p + 0y (pU) =
= —3uu'9;(pu!) — Lpu? 9;(un') — w6 0;p + Oy (pU) =
= —30i(puiu'e?) — ! 9;p + 0,(pU) =
= —50;(puiu'e’) — 0;(pUn’ +pu’) =
= —0; (u/ (3puu’ + pU +p)) =

= —8j (Uj (E +p))
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SO:
OE +0; (u! (E+p)) =0
oE

E+V~(u(E+p)):0

5.1.2 Navier-Stokes Equations

When we write the relativistic conservation law in a nonrelativistic limit (for a general fluid), we get the Cauchy
momentum equation:

ov
bl ) —V. f
p(at—i—v Vv> V-o+

where the stress tensor o can be written as:
c=—-pl+T

and we get the Navier-Stokes equations:

9
p(a‘lj-‘v-v-VV) = Vp+V -T+f

Those are the most general equations. If we assume some more things about the fluid, they can be further simplified.

For Newtonean fluids, we want T to be isotropic, linear in strain rates and it’s divergence zero for fluid at rest. It
follows that the only way to write the tensor under these conditions is:

Tij = 2u€i; + 05AV - v
where the strain rate is:
1
€ij = 5 (0;v; + O;v;)
The divergence of the tensor is:
0,;Ti; = 2pdjeij + 0;0:;AV - v = pn0;0;v; + po;V - v+ A0,V - v = pd;0v; + (u + X))oV - v
or in vector form (these are usually called the compressible Navier-Stokes equations):
V-T=pupV*v+(u+ANVV-v
For incompressible fluid we have V - v = 0, so we get the incompressible Navier-Stokes equations:
V-T =pViv
and for a perfect fluid we have no viscosity, e.g. 1 = 0, then we get the Euler equations (for perfect fluid):

V-T=0

5.1.3 Bernoulli’s Principle

Bernoulli’s principle works for a perfect fluid, so we take the Euler equations:

0
p(azf—l—v-Vv) =-Vp+f
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and put it into a vertical gravitational field f = (0,0, —pg) = —pgVz, so:

0
p(v+v-Vv) =—Vp—pgVz

ot
we divide by p:
0
Y v Vv=-V E—f—gz
ot P
and use the identity v - Vv = 1Vo? + (V x v) x v:
0 1
a‘t/+2Vv2+(V><v)><v+V(];+gz) =0
so:
ov v? p
— +(Vxv)x VI— =] =0
at+( V)X v+ <2+gz+p>
If the fluid is moving, we integrate this along a streamline from the point A to B:
v v? P B
—-dl+ | = = =0
o T [ gt P] A
So far we didn’t do any approximation (besides having a perfect fluid in a vertical gravitation field). Now we assume
a steady flow, so %‘t’ = 0 and since points A and B are arbitrary, we get:
v? D
— + gz + = = const.
2 p

along the streamline. This is called the Bernoulli’s principle. If the fluid is not moving, we set v = 0 in the equations
above and immediately get:
2
v

— + gz + b_ const.
2 p

The last equation then holds everywhere in the (nonmoving) fluid (as opposed to the previous equation that only holds
along the streamline).

Hydrostatic Pressure

Let p; be the pressure on the water surface and py the pressure h meters below the surface. From the Bernoulli’s
principle:

b1 P2

P P
o)

p1+ hpg = p2

and we can see, that the pressure h meters below the surface is hpg plus the (atmospheric) pressure p; on the surface.

Torricelli’s Law

We want to find the speed v of the water flowing out of the tank (of the height i) through a small hole at the bottom.
The (atmospheric) pressure at the water surface and also near the small hole is p;. From the Bernoulli’s principle:
2
P v P1
Bty -+
p 2 P

v = +/2gh

SO:

This is called the Torricelli’s law.
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Venturi Effect
A pipe with a cross section A;, pressure p; and the speed of a perfect liquid v, changes it’s cross section to As, so the
pressure changes to po and the speed to vo. Given Ap = p; — po, A1 and A, calculate vy and vs.
We use the continuity equation:
A1v1 = AQ’UQ
and the Bernoulli’s principle:
2 2

v P1 (% D2

71 4+ —===4==

2 p 2 P
so we have two equations for two unknowns v; and vy, after solving it we get:

A 2Ap

v = —

P (A7 - AY)
2Ap

v = AN orE ag)

Hagen-Poiseuille Law

We assume incompressible (but viscuous) Newtonean fluid (in no external force field):

0
p((?‘t,+v~Vv> = —Vp+uV3v

flowing in the vertical pipe of radius R and we further assume steady flow %‘t’ = 0, axis symmetry v, = vy =
9p(-++) = 0 and a fully developed flow 0,v, = 0. We write the Navier-Stokes equations above in the cylindrical

coordinates and using the stated assumptions, the only nonzero equations are:
0=—0p
0=—d.p+ u%f?r(rawz)
from the first one we can see the p = p(z) is a function of z only and we can solve the second one for v, = v, (r):
0:(r) = 7-(0:)r* + Cilogr + Cs

We want v, (r = 0) to be finite, so C; = 0, next we assume the no slip boundary conditions v,(r = R) = 0, so

Cy = —ﬁ (0.p) R? and we get the parabolic velocity profile:
1
. - —62 R2 2
1) = (0P 1)
Assuming that the pressure decreases linearly across the length of the pipe, we have —0,p = % and we get:
AP
v:(r) = m(RQ - 7"2)

‘We can now calculate the volumetric flow rate:

v d dz o rht
Q—E—&/zdS—/EdS—/vzdS—/o /Ovzrdrqu—

_ Apr [F APTR!
—2ul 8uL

so we can see that it depends on the 4th power of RR. This is called the Hagen-Poiseuille law.

(R* —r?)rdr =
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5.2 MHD Equations

5.2.1 Introduction

The magnetohydrodynamics (MHD) equations are:

Ip
—r . = 5.9
5 +V-(pv)=0 (5.9
ov 1
p(at—k(v~V)v> =-Vp+ ;(VxB)xB—kpg (5.10)
P V(v xB)+ VB (5.11)
V-B=0 (5.12)

assuming 7 is constant. See the next section for a derivation. We can now apply the following identities (we use the
fact that V - B = 0):

[(V X B) X B]Z = Eijk(v X B)jBk = Eijk&‘jlm(ale)Bk = (5kl6im — 5km(5il)(ale)Bk =

= (OxB;)By, — (0;Br)Br = |(B-V)B — %V|B|2

(VxB)xB= (B-V)B—%V\BF = (B-V)B+B(V-B)—%V|B|2 :V~(BBT)—%V|B|2
Vx(vxB)=(B -V)v-B(V-v)+v(V-B) - (v-V)B=V-(Bvl —vB”)
dp

V(") = (T (pV) v+ plv - V)V = —vl o p(v- V)v
So the MHD equations can alternatively be written as:

dp
-r : = 5.13
9 +V-(pv)=0 (5.13)

1 1

%V +V-(pvwl) = -Vp+ " (v -(BBT) — 2V|B|2> + pg (5.14)
%—? =V.(Bvl —-vBT) + VB (5.15)
V-B=0 (5.16)

One can also introduce a new variable p* = p + 1 V|B|?, that simplifies (5.14) a bit.

5.2.2 Derivation
The above equations can easily be derived. We have the continuity equation:

ap _
E—FV-(pv)—O
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Navier-Stokes equations (momentum equation) with the Lorentz force on the right-hand side:

0
p(a‘t,+(v~V)v> =-Vp+jxB+pg

where the current density j is given by the Maxwell equation (we neglect the displacement current %—]f):

1
j=-VxB
7

and the Lorentz force:
1,
—j=E+vxB
o

from which we eliminate E:

1 1
E=-vxB+-j=-vxB+—VxB
o op

and put it into the Maxwell equation:

0B
E—_VXE
so we get:
8—B:Vx(va)—Vx <1V><B)
ot o

1

ap

assuming the magnetic diffusivity n = is constant, we get:

0B _
ot

where we used the Maxwell equation:

5.2.3 Finite Element Formulation

We solve the following ideal MHD equations (we use p* = p + 3 V|B|?, but we drop the star):

=Vx(vxB)-nVx(VxB)=Vx(vxB)+7(V’B-V(V-B)) =V x (vxB)+7V’B

O (u-V)u—(B-V)B+Vp=0 (5.17)

2 VB (B V=0 (5.18)

V-u=0 (5.19)

vV B=0 (5.20)
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If the equation (5.20) is satisfied initially, then it is satisfied all the time, as can be easily proved by applying a
divergence to the Maxwell equation m = —V x E (or the equation (5.18), resp. (5.11)) and we get 3 e ;(V-B) =0,
so V - B is constant, independent of time. As a consequence, we are essentially only solving equations (5.17), (5.18)
and (5.19), which consist of 5 equations for 5 unknowns (components of u, p and B).

We discretize in time by introducing a small time step 7 and we also linearize the convective terms:

u” — un—l
_|_ (un—l X V)un _ (Bn—l . V)Bn + Vp — O (521)
T
n _ Rrn—1
& + (u”fl . V)Bn _ (anl . V)un =0 (522)
T
Vou =0 (5.23)

Testing (5.21) by the test functions (v, v2), (5.22) by the functions (C7, Cs) and (5.23) by the test function ¢, we
obtain the following weak formulation:

n—1
/ U1TU1 + " V)ugvy — (B V)Buy — p% dx = / g dx (5.24)
Q Q
n—1
/ uvz (" Vugvy — (B" ! - V) Byvy — p% dx = / 2 V2 g4y
Q 7 dy Q 7
" B Bn—l
/ 17_01 L (W V)B Oy — (B V)u Oy dx = / %Cl dx (5.25)
Q Q
n—1
/ BaC (W V)ByCy — (B" - V)usCo dx :/ Bi Oy
o 7 Q T
/ Ou +% dx =0 (5.26)

To better understand the structure of these equations, we write it using bilinear and linear forms, as well as take into
account the symmetries of the forms. Then we get a particularly simple structure:

+A(u1,v1) —X(p,v1) —B(By,v1) = li(v)
+A(uz,v2) =Y (p, v2) —B(B2,v2) = la(v2)

+X(q’ ul) +Y(q’ u2) = 0

—B(’U,l,Cl) +A(Bl,C1) = l4(Cl)
—B(UQ, Cg) +A(BQ, 02) = l5 (02)
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where:

Alu,v) = /Q =t

— V)uv dx
pu

B(u,v) = /(2(an1 - V)uv dx

(u,v) /u—dx
Q

Y (u,v) /u—dx
Q

T
anl
Li(v) = / 1L Y4
Q T
anl
I5(v) = / 2 Yax
Q T

E.g. there are only 4 distinct bilinear forms. Schematically we can visualize the structure by:

A -X | -B

A |-Y -B
X |Y
-B A

-B A

In order to solve it with Hermes, we first need to write it in the block form:

air(ui,vi) +
agi(ui,v2) +
(131(’&17 ) +
asi(uy,Cr) +
a51(u1,C ) +

comparing to the above, we get the following nonzero forms:

aii(uy,v1)  +
0 +
azi(ui,q)  +
asi(u1,Cr) +
0 +

aia(uz,v1) + aiz(p,vi) + aua(Bi,v1) +  ai5(Ba,vr)

22(U2, v2) 4+ ags(p,v2) + awu(Bi,v2) +  ass(Ba,v2)
asa(uz,q)  + asz3(p,q) + aza(Bi,q) + ass(Ba,q)

asa(u2,C1) + aas(p,C1) + aaua(B1,C1) + aa5(B2,Ch)

asa(uz,C2) + as3(p,Ca) + asa(B1,C2) +  ass5(B2,Co)
0 + aiz(p,v1) + aua(Br,v) + 0
asa(uz,v2) + ass(p,v2) + 0 +  a25(B2,v2)
a32(’LL2, q) + 0 + 0 + 0
0 + 0 + a44(B1,C1) + 0
asa(u2,C2) + 0 + 0 +  as5(B2, Ca)
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where:
a11(ug,v1) = A(ug, v1)
azo(ug,v2) = A(uz,vs)
a44(B1,C1) = A(B1,CY)
ass(Bg, C1) = A(B2,C3)
ar3(p,v1) = —X(p,v1)
azi(u1,q) = X(q,u1)
az3(p,v2) = =Y (p,v2)
as2(u2,q) = Y(q,u2)
a14(By1,v1) = —B(By,v1)
as1(u1, Cr) = —B(u1,Ch)
as5(Ba,v2) = —B(Ba, v2)
aso(uz, Cy) = —B(ug, Cs)

and [1, ..., [5 are the same as above.

5.3 Compressible Euler Equations

5.3.1 Introduction

The compressible Euler equations are equations for perfect fluid. Perfect fluids have no heat conduction (T = 70 =
0) and no viscosity (I = p1), so in the comoving frame the stress energy tensor is:

. P\ o
T°F = diag(pc®, p, p,p) = (p+ Cfg) uu” + pg™?

(we use g"” = diag(—1,1, 1, 1)). Relativistic Euler equations are given by the conservation of the stress energy tensor
and the particle number conservation:

T =0
Op(nut) =0

By doing the nonrelativistic limit (see Perfect Fluids for a detailed derivation), we get the following Euler equations:

0
£+V~(pu):0

ot
8(5:) +V-(puu?) +Vp—£=0
ok
= - (w(E —
o7 TV (u(E+p) =0
where
E = pe + %pu2

is the total energy per unit volume, composed of the kinetic energy per unit volume (%puz) and the internal energy per
unit volume (pe), where e is the internal energy per unit mass (¢ = %). The energy E doesn’t contain the rest mass
energy, but all other energies are hidden in the internal energy.

We use the ideal gas equations, so:
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where n is the number of moles of gas, M is the molar mass of the gas (i.e. a mass of one mole of the gas, e.g. for
dry air we get M = 28.956 g/mol, as it is mainly composed of 20% of oxygen with atomic mass 16 and 78% of
nitrogen with atomic mass 14, both form diatomic molecules, so the molecular mass is twice the atomic mass giving
the total of 0.2 -2 - 16 + 0.78 - 2 - 14 = 28. 24 the rest is given by the other components and one also has to average
over all isotopes), R=N Ak B = 8.3145 = — is the ideal gas constant (/N4 is the Avogadro constant and k is the

Boltzmann constant) R = {isthe spec:1ﬁc 1dea1 gas constant (e.g. for dry air we get R = 52145 4 oK = 287.14 =),
p = M = g is the dens1ty of the gas (e.g. for dry air at the pressure 10° Pa and temperature 22 °C we get p =

W;FWMS) o = L 18 X =5, ¢, is the specific heat capacity at constant volume (i.e. the amount of energy needed
to heat one kg by one Kelvin at constant volume, e.g. for dry air the experimental value is about ¢, = 717.5 kg—K), v
is the volume and 7' is the temperature of the gas. Of those, V', n, M, R, R are constants, p, e, E and T are functions
of (¢t,z,y, 2).

Here are the SI units of the various terms in the Euler equations:

-1

[u] =ms
[)] = kgm™®
N =kgms ™2
J=Nm = kngs’2
[p] = — kgm 52
[30u”] = [PHU} —kgm 3m?s 2 =kgm~ls?

[E]=Jm™® =kgm 's2
[Rl=Jkg 'K ! =m?s2K™!
[co] =Jkg 'Kt =m?s?K!

_[BE] _kgmT'sT? o,

S o

In order to calculate the specific heat ratio x, we use R = ¢, — ¢,:

v+ R R
K = C—p = 70 + =1 + —
Cy Cy Cy
and the speed of sound is:
_ p
c=,/K—
P

5.3.2 Dimensionless Euler Equations

We choose 3 constants /., u, and p, - characteristic length of the domain, velocity and density. Now we multiply the
Euler equations with proper combinations of these constants as follows:

ap Lo
|:at v ( )] Pr Uy =0

]
{%?Jrv (u (E+p))} plug =0
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This is equal to:

p =
LLv-(pu)=0
il (pu)

A(Hi . o -
PY) L. (paal)+ Vp—F =0
ot

o | § (W(E+p) =0
ot b=
where:
Ly
ty ==
Ur
~ t
f=—_
ty
P
p=+
Pr
. u
= —
Uy
V=1IV
Jop—
pru;
p=-"
pru?
f=f l’”2
pru?
In particular, if f = (0,0, —pg), then
f=1(0,0,-p9)
L
g_gug - lr

So the dimensionless Euler equations look exactly the same as the original ones, we just need to rescale all the

quantities using the relations above.

5.3.3 Conservative Form of the Euler Equations

We can write the Euler equations as:

67W+%+%+8fz+ =0
o " or oy  9: &7
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where:
0 Wo
puL w1
W = pPU2 = wo
pu3 w3
F wWaq
f 2
pui +p we TP
fm = pUIU — w;;:?
puIU3 e
0
u1(E + p) i (wg +p)
pu2 wqfil
puU2U1 2wo
f,=| r3+p |= Z4p
0
us(E + p) w2 (ws +p)
pu3 wqu)l
pU3UL wg
£ — Uz s - w’i)wg
z - 0
pu3 +p “yp
us(E +p) w2 (wy + p)
0
7fa:
g = _fy
_fz
0
R R w? + wi + w?
p=—(E—3p(uf+ui+u3))=— <w4—123
Cy Cy 2wy

We solve for the unknowns wy, w1, we, ws and wy as functions of (¢, z,y, z), the rest (R, c,, fz, fy, f-) are either
constants or depend on the unknowns. In order to convert from the physical quantities p, u;, us, us, £ and p to wy,
vy Wq, WE USE:

W = p
w1 = puq
W = puz
w3 = pus

C
wy =B =p3 + gp (uf + v} +u)
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the opposite conversion is:

P = Wo

w1

Uy = —

Wo

w2

Ug = —

Wo

w3

uz = —

Wo

E:w4
R w} + wi + w3
p=—|lwy— ———

Cy 2wy

Sometimes people also use u, v and w instead of uy, us and ug.

Note: pu = j, where j is the fluid density current (it’s a 3-vector) and also w* = j* (here w* is the same as w,, €.g.
we are a bit sloppy about the notation), where j* is the density 4-current (e.g. the first 4 components of w are exactly
the components of the 4-current j*):

gt =pv" = py(c,u) =~y

where as usual @ = 0,1, 2, 3 is the relativistic index, c is the speed of light, and in the nonrelativistic limit (¢ — o0)
we get v — 1 and the remaining c in 5° will cancel with ¢ in 9y = %%, so it will not be present in the final equations
(that involve terms like 0,,5*). We can also just set ¢ = 1 as usual in relativistic physics.

5.3.4 Weak Formulation

The Euler equations:
ow of, of, Of,
2z -0
ot "o "oy "o T8

are nonlinear. The time-derivative is approximated using the implicit Euler method

whtl — wn N afw(wn+1) N 8fy(W"+1) N afZ(W"'H)

=0
T ox dy 0z ts
The vector-valued test functions for the above system of equations have the form:
¢° 0 0 0 0
0 ot 0 0 0
0 ) 0 l) 802 Pl 0 3 0
0 0 0 @3 0
0 0 0 0 ot

After multiplying the equation system with the test functions and integrating over the domain €2, we obtain (here the
index ¢ = 0, 1, 2, 3,4 is numbering the 5 equations, so we are not summing Over it):

/ w?+1 —wy o+ o (fl(wnﬂ))i(pi + 9 (fy(wnﬂ))i@i + 9 (fZ(Wn+1))
Q T ox oy 0z

Now we integrate by parts:

w?-’_l_w:in i n+1 ' n+1 o' n+1 i 13
/Qf‘P — (B(w") 5y — (BWT), 5 = (BT, 5 it Pt

_|_/ (fa;(wn_‘—l))i Spi ne + (fy(wn+1))i (Pi ny + (fz(wn+1))i (Pi n, dQZ‘ =0
[219]

L'+ gip' dPr =0

0’
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where n = (ng, ny, n.) is the outward surface normal to 0€). Rearranging:

wi™ ni1yy 9% ni1yy 0 niiyy 09 3
/Q T o' = (E(w ))i%*(fy(w ))iaiy*(fz(w ))i@dyr

. . . wh . .
b [ (), o (B )0 (£ ) e = [ Bt d
o0 Ja
We can then linearize this for example by taking the flux jacobians A, (w"™*1) on the previous time level A, (w").

The finite element formulation is obtained from here by replacing in the standard way the unknown solution w™*! by
a piecewise-polynomial unknown function

N
1 _
wy fE Yek,
=1

where 1)y are the basis functions of the piecewise-polynomial finite element space. This turns the above weak for-
mulation into a finite number of nonlinear algebraic equations of the form F'(Y) = 0 that will be solved using the
Newton’s method.

Explicit Method

We also derive the weak formulation for the explicit method. Euler equations:

ow | O, 0f, OF.

ot Tox Toy Tz

g=0

The time-derivative is approximated using the explicit Euler method

Wn+1

—w"  Ofy(wm)  Of,(w") Of,(w")
T * ox + dy * 0z

The vector-valued test functions for the above system of equations have the form:

+g=0

o 0 0 0 0
0 o 0 0 0
o |, o .l |.] 0o |, | o
0 0 0 o3 0
0 0 0 0 o

After multiplying the equation system with the test functions and integrating over the domain €2, we obtain (here the
index © = 0, 1, 2, 3, 4 is numbering the 5 equations, so we are not summing Over it):

/ witt — ot a(ft(wn))i@i 4 3(fy(wn))i<pi n 9 (F.(w"))
Q T al‘ 6y 82

Now we integrate by parts:

Lo+ gip' e =0

’w:,"—"_l B U),? 7 n 3801 n 6()01 n 6801 7 13
[ = (), G = (), o (0w, B+ gt
4 /a W) (B (), 5y + (6. (07, P = 0

where n = (ng, ny, n,) is the outward surface normal to 2. Rearranging:

w;l-’_l i 13 T,U,Z’L i n 8<)01 n 6801 n a@l i 13
[t e = [t (), G+ (), G (), S — gt e

- / (B (W™); 0 10 + (B, (W), 0 1y + (£-(W); & iz %2
oQ
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5.3.5 Flux Jacobians

Now we write the spatial derivatives using the so called flux Jacobians A, A, and A .:

of, _ ot ow _ , Ow
or Ow dx  “ oz
of,,

Similarly for y and z, so we get:
ow ow ow ow
— 4+ A, —+A,—+A,— =0
ot " Depr Thugy THe TR

One nice thing about these particular f;, f, and f, functions is that they are homogeneous of degree 1:
f.(Aw) = A, (w)

so the Euler equation/formula for the homogeneous function is:

Of(w)
R ASAAN
Y T ow (w)
w-A, ="f(w)
So both the f,, and it’s derivative can be nicely factored out using the flux Jacobian:
f,=A,w
of, ow
oxr "oz
by differentiating the first equation and substracting the second, we get:
0A,
=0
ar

similarly for y and z. To calculate the Jacobians, we’ll need:

O _ B witeitwl _w _wp  _ws 1
ow Co 2w? wo wo wo

then we can calculate the Jacobians (and we substitute for p):

2 2, 2, 2
_wi , R witwyfwg 2wy _ Ruw
wg Cy 2w§ wo Cy Wo
A_ o afx o __ wiwa2 wo
x(W) = 67 = w% wo
W _wiws w3
w? wo
2 02 g2 21 242 21 0242
_wiwg _ w1 R wy — YiTWaTWs 4w R witwsytwy wq 1 R w W TWyTWy
w? w2 ¢ 4 2w wo ¢ 2w?2 w wo ¢ 21
e 3 Co 0 0 Cy wg 0 0 Cy wo
_ Wwawq w2
w2 wo
Of 2 %+ 24,2
A Yy _ Wy . R wWyTwyTw3 _Rw
y(W) T ow w2 ey 2w Cy wo
W _ waws 0
w2
2+, 02+ 2 2+, 2+ 2
_waws _ w2 R Wy — wi tws+ws wy R witwrtws R wawy  wa + 1 R
wg w% Cy 2w wo Cy 2w? cy Wi wo wo Cy
0 0 0
__ Wwsw;y w3 O
’u)g wo
af w3 Wz 0 w3
Z )
= = w wo
Ax(w) ow 3 2wyl
_ W3 |, R wWyTwyTws _Rw _Rw;
w? Cy 2w§ Cy Wo Cy Wo
2, 2, 2 2, 2, 2
—wswy  wg R(,,  WiHWhHws ) 4 wg R witwydws R wswy R wswy  wg
w? wg ¢y 2wo wo Cy 2w? cy  wi cy  wi wo

_ R wy
Cy Wo
w1
wo
2
R Wy R wiws
cy w3 o wg
_ Rws
Cy Wo
2 2 2 2
_ witws;+ws R wy
2wq Cy w%
wy
wo
wo
wo
2wz R ws
wo Cy Wo

2 2 2
R (’LU4 _ witws+w;

21110
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5.3.6 2D Version of the Equations

aiw + % + % + =0
ot " or oy &7
where:
0 Wo
W — pul _ w1
pu2 w2
FE w3
pul et
e | puitp | _ bt
xr - wi w2
pratie “wo
u1(E +p) 1 (ws + p)
pu2 w2
W2 W1
f = pU2U1 = 21110
v pu3 +p ©otp
uz(E +p) w2 (w3 +p)
0
_fa;
g =
—fy
0
pzﬁ(E_;p(u%Hf)):ﬁ e W WS
Cy 2 ! 2 v 3 2’[00
Discretizing the time derivative:
wtl —wn  Of, (wht! of, (w1
OB R
T Ox oy
The vector-valued test functions for the above system of equations have the form:
@0 0 0 0
0 ot 0 0
0 ) 0 ) SDQ ’ 0
0 0 0 @3

After multiplying the equation system with the test functions and integrating over the domain €2, we obtain:

/ wi ™ — wp o+ o (fi’(wnﬂ))icpi + 9 (£,(w"*h))
Q T ox Jy

o'+ gigp! AP =0
Now we integrate by parts:

wnJrl —wr . a(pi 8S0i )
7 7 7 n+1 n+1 7 12
/977 o' = (E(w); 5 — (W), 5o+ g’ da

—l—/ (fm(w"H))i goi Ng + (fy(w"H))i <pi ny dz =0
o0

where n = (ng, n,) is the outward surface normal to J€2. Rearranging:

wzﬁ—H i n+1 Ay’ n+1 ¢’
/Q — ' (L), o - (B), B da

+/ (£ (wW"™)), " e + (£, (W) " ny da =/ DLt~ gip' da
0 o 7
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The 2D flux Jacobians are:

0 1
_wi | Rwitw) 2wy _ Ruwy
af"L wi cy  2wd wo Cy Wo
Am(W) = 3. = _wiwy wy
aW w[z) wo
_wwy _wy R (. witwi _i_ﬂﬁw%"'wg w3 4 1R Wa — WiTwE
w% wg Coy 2w wo Cy ng wo wo Coy 3 2wo
0 0
_ wawy wa
of, wg wo
Ay(w)=—= _wi | R witw] _Rw 2wz _ R wa
ow w? cy 2w? Cy Wo wo
0 2 20 2 2
wows wy R witw; we R Witwy; R wswi w3 + 1 R
TTw? T wle, \WB T 2w ) Twoe, 2wl e wl  wo Twge
0 o Cov 0 0 Cv  2wgj v Wy 0 0 Cov

5.3.7 Sea Breeze Modeling

In our 2D model we make the following assumptions:

and the boundary condition is as follows:

T'(x,t) = (’;) sin <”(t;4t°)) <1 + tanh (S(;)))

T(z) =Ty +T'(z,t)

The weak formulation in 2D is (here ¢ = 0, 1, 2, 3):

n+1 7 7
wy n n+1890 n n+1a</7 2
/Q ~ i (A (w ))ijwj B (A, (w ))U w} e d“z+

n 7 w'? % 7
Jr/ (Aac(wn))] n—H‘PZ Ng + (Az(wn))] )—H‘P n, dz :/ - ¢ — g’ &’z
o0 Q

In order to specify the input forms for Hermes, we’ll write the weak formulation as:

Boo(wo, ¢°) + Bo1 (w1, ¢°) + Boz(wa, ¢°) + Bos(ws, ¢°) = lo(¢")
Bio(wo, @) + Bii(wi, ¢') + Biz(wa, ¢') 4+ Bis(ws, ') = 11 (")
Bao(wo, ¢?) + Bai (w1, 9?) + Baz(wa, 9*) + Bas(ws, ¢?) = l2(?)
Bso(wo, ¢°) 4+ Bsi (w1, %) + Baa(wa, ¢°) + Bas(ws, ¢°) = l3(¢”)
where the forms are (we write w; instead of w"“)
n, 0
hle?) = [ L5
0 T
n, 1
11(801) / wyp d2
Q T
w

i wi n n o' 2
Bij(wj, ¢") Z/Q 7<P dij — (Az(w ))ij Wy or (Az(w ))ij Wy 9z d*z
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In the last expression we do not sum over ¢ nor j. In particular:

OV AV
Boo(wo, ¢ /@990— W”))Oowo—aﬁ —(AZ(W”))OOwO—ai d%::/g%(po d%z
o¢° ¢° ¢°
0y __ _ n n 2 — _ n 2
Boi (w1, ¢ )—/Q (Ap(W™))gy w1—— o — (A (W"))g; w1 02 d®x /Q (Az(W"))o w1 o d*z
dp” dyp” / dp°
0y _ _ n n 2, _ n 2
Bz (we, ¢ )—/Q (Az(W"))pe w2 —H— o — (AL (W")) o w2 P d*z A (AL (W"))gp w2 P d*z
n d¢° n dp°
BOB(wS,QQO):/Qf(Am(W Do s = (A= (W")g w5 S 2w =0

Ot ol
Brofun ') = [ = (Aa(w™) g w050 — (Auw™)yg w0 -

1y ﬂ 1 _ n 87501_ n 67301 2
Bii(wi,97) = g o — (Az(W"))}; w1 o (AL (W"))}; w1 02 d*z

5.3.8 Boundary Conditions

We rewrite the boundary integral by rotating coordinates, so that the flow is only in the x direction (thus we only have
f.):

L&um»¢%+@wm¢%+@wmwm&m:
:/ T, (Tw)p' A%z
o0

Now we need to approximate f,,(7'w) somehow. We do that by solving the following 1D problem (Riemann problem):

ow 0
— 7f =
o o) =0
or:
ow ow
—_—= 5.27
B +A(w) 5 0 (5.27)
Wo
w1
w(z,t) = | we
w3
Wy
And we approximate f,(w) = f(w(0, t)). The initial condition is:
<0
w(z,0) = {WL , wi(1— H(z)) +wrH ()
WR T > 0
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Now we write:

w(z,t) = Zfi(xvt)ri
Wi = Zairi
Wr=) Bir;

i o <0
g(xvo)_{ﬁt Z‘>O

and substitute into (5.27):

g og! B
Z(@t +A(w)8x)ri0

%

o o¢? B
Z(@t +>\i(w)8x)ri()

%

So we get:
o¢! o¢!
ot ox

This is a nonlinear problem, that cannot be solved exactly. First, let A doesn’t depend on w. Then also \; are a
constants:

o¢t ot
ot +A or

and the solution is constant along the characteristic () = A;t + ¢ for ¢ > 0 and we get:

=0

(673 £E*>\it<0

B w—At>0 a;(1 = H(x = Ait)) + BiH (z — Ait)

Eix,t) = €' (x = \it, 0) = {

and

= Zfi(l‘,t)ri = Z (ai(l - H(.’L‘ - )\it)) + BZH(.%‘ — )\it)) r;

i

w(0,t) =Y (ei(1 = H(=Ait)) + BiH(=Nit)) 1; =

i

- Z (aiH(Nit) + BiH (=\it)) 1y =
- Z (aZH()‘l) + ﬁzH(—/\Z)) r, =

Z alrl + Z/Blrl

i=k+1
SO:

f(w(0,t)) = Aw(0,t) Z Aar; + ZAﬂZrZ

i=k+1

Z )\ozlrz—i—zx\ Bir; =

i=k-+1

=A" Z%I‘z’ +A” Zﬁiri =
i=1 i=1

= A+WL + A" wg
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In the nonlinear case we cannot solve it exactly, but we can approximate the solution by:

f(w(0,t) =ft(wr) +f (wg) =

=f(wg) — o AT (w)dw =
=f(wr) + o A~ (w)dw =
~ f(WL) + A~ (WR)WR — A~ (WL)WL (5.28)

Let’s say the domain is for z < 0 and we are applying the BC condition from = > 0. Then wy, is taken from the
solution and w, is prescribed, for example at the bottom it could be:

14
pu1
Wgr = 0
0
E
Now we need to calculate A ™. First we write:
— -1
A, =RD,R
- —-n-—1
A; =RD,R
up—c 0 0 0 0
w 0 u; 0 0 0
1 .
D,(w) = —1 + diag(—¢,0,0,0,¢) = 0 0 uw O 0
w
0 0 0 0 wuw 0
0 0 0 0 wu+c
1 wi w; wi wy
D (W7 dlag(wo ’wo’w()’wo’o) U)1<0
T - .
dlag(%) -¢0,0,0,0) wy >0
Explicit forms of the matrices:
1 1 1 1 1
u—c u u u ct+u
R = v v v—c v v
w w w w—c w
.2 2
7cufli—n+%u2+%v2+%w2 %u2+%v2+%w2 7cv+%u2+%v2+%w2 7cw+%u2+%vz+%w2 cu— lim+%u2+%v2+%w2
%cufizﬂfiv27%w2+%nu2+%/{v2+iﬁw2 %U7%67%I€u %vfémj %wfénw 7%+%n
1 ]_ —cv—cw+c2+%u2+%v2+%w2—%an—%nvz—%nwz —u+Ku c—v+KV c—wt+KRwW 11—k
R =— cv 0 —c 0 0
c cw 0 0 —c 0
7%cufiu27iv27iw2+%nu2+%nv2+iﬁw2 %ch%uf%nu %U*%H’U %wfénw %Jr%l{
u—c 000 O
0 00 O
D, = 0 0ul 0
0 00w O
0 000 ctu
1 0 0 0
7%uQ7%v27%w2+%mu2+%mv2+%nw2 3u—kKku V—RU w—rw —14+k
A$ — —uv v u 0 0
—uw w 0 u 0
72uv272uw2+2u02—ur:2v27u~22w_22«:3nuu2+3;1uw272u3—N2u3+3nu3 v2+w272(‘.2+3u2—532;mw2—5&u2+2w2u2 UV— KUY YW — KUW KU
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For u; < 0O:

—2c242

2342 _003,2_2.3

w2 —2c302_2c3w2 2,2 2

+2u3v2 4203 w2 —6uc2v? —6ucZw? —4rudv2 —drudw2—2kcBu42cv2 w242k 024 2keB w24 2uv2 w22k 2 w3 v 422

wdw246cuv246cuw

For uy > 0:

—10c2u

—2c3u2 2302 —2c3 w2 —2u30v2 —2u3 w2 —2kc3u? —2uc?v? —2uc?w? —2uvZw2 —2k2uBv2 —2k2uB w24 2cv2 w2 423 V2 42k w24 aruS v Farud w2 +6cuv2 f6cuw

Boundary Conditions for the Sea Breeze Model

In the boundary (line) integral we prescribe wé’“ using a Dirichlet condition and calculate it at each iteration using:
2 2
wy + w
w?“ =FE =pTc, + %qu = woTlc, + #
0

where T'(t) is a known function of time (it changes with the day and night) and also prescribe w{“rl = 0 on the left

and right end of the domain and ng = 0 at the top and bottom.

All the surface integrals turn out to be zero. On the top and bottom edges we have n = (n,, n,) = (0, £1) respectively
and we prescribe wy = 0, so we get (remember we do not sum over 7):

/ (Ap (W), w50 1 + (Ay (W), w5 ny do =
o0
- / (f$(W"))Z <pi Ng + (fy(W"))i <pi ny de =
o0

" /a (6w, s

where:
(105} 0
W2 W1
Y 22 4 P
wo p
w2 (w3 + p) 0

So all the components i # 3 of the surface integral are zero, and for i = 3 the test function ¢ is not there, because
we prescribe the Dirichlet BC w3 = 0, so the surface integral vanishes for all i.

Similarly on the left and right edges we have n = (n,,n,) = (£1,0) respectively and we prescribe w; = 0, so we
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get (remember we do not sum over ¢):
| wytna + (8y (w7, =
= | ) s+ (g 7)oy da =

= i/{m (fo(w")), ¢" dz

where:
wi
2
wy
wo + p

w1 w2
wo

(w3 + p)

oo o

So all the components i # 1 of the surface integral are zero, and for 7 = 1 the test function ¢! is not there, because
we prescribe the Dirichlet BC w! = 0, so the surface integral vanishes for all 4.

5.3.9 Newton Method

The residual is:

n+1

Fin(veh) = [ Bl )0 oy p () 2
Q T ox

0 i,m
= Lo (™) =52 + Gy mgpim d dy

| fem(W(y"™))@imVe + fym(w(y"))pimvy dS =0

where m = 0, 1, 2,4 numbers the equations, ¢+ = 1,2, ..., M numbers the finite element basis functions, N = 4M,
Y = (3, 1,93, 3,43, yi, ). The Jacobian is:

an’ m Pr.s 8901' m a@i m
JY” :77}/” - ’ im_AI'ms " 7.8 ’ _A m,s " 7'87’(1 d
() = G = [ E A ) T = Ay () Ay
+ 6 Az m,s(W(Y"™))or s PimVa + Ay,m,S(w(yn))@r,s@i,mVy ds
And the Newton method then is:
J(Y™MoYy"tt = —F(Y™)
5.3.10 Older notes
Author: Pavel Solin
Governing Equations and Boundary Conditions
o ; o | & N RO o o ) b
U o + 0 0 0
= - = = 5.29
alw | Tar| W | Ta| ire || o 0| 629
0 o ow B divy 0
0 ) Co

where g is the air density, v = (u,w) is the velocity, U = gu, W = pw, T is the temperature, § = o7, and g is the
gravitational acceleration constant. We use the perfect gas state equation p = gRT = R# for the pressure.

Boundary conditions are prescribed as follows:
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e edge a: Jp/0v =0,0U/0v =0, W = 0, § = tanh(z) * sin(7t/86400)
* edges b,c: p/Ov =0,U =0,0W/0v =0,00/0v =0
* edge d: 9p/0v =0,0U/0v =0,W =0,00/0v =0

Initial conditions have the form

—  po— 11476—— + 52 4( ) ( ) ,
p(2) 7 1000 +529-54 (1500) ~ 228 (1000
T(z) = 194—2— 22( )7.1(7)7
(2) — 8:31945500 T 92932 (3000~ O0199 (1000
_ p(Z)

9@ = Rreay

0(z) = o(2)T(2),

U(z) = 0,

W(z) = 0.
Discretization and the Newton’s Method
We will use the implicit Euler method in time, i.e.,

8@ Qn—i-l Qn
a T
etc. Let’s discuss one equation of (5.29) at a time:
Continuity equation: The weak formulation of
n+1 n n+1 n+1
0 -0 oUu ow
=0
T + ox + 0z
reads
n+1 aUn-H 8W"+1
P (Y Ml R el M (5.30)

The global coefficient vector Y1 consists of four parts Y2, YV, YW and Y? corresponding to the fields o, U, W
and 6, respectively. The same holds for the vector function F' which consists of four parts F¢, FV, FW and F?. Thus
the global Jacobi matrix will have a four-by-four block structure. We denote

N°© NU NW
= yhel, U =Dyl Wt =S Tyl et = Zykgpk. (5.31)
k=1 k=1 k=1

It follows from (5.30) and (5.31) that

oF7 8(,05] o OF7 890}/[/

o Oz v 39}”

o OFf

0
o 0z v 39;”

OF} 2
= 7@.,
3?/5 T " 5ij

=0.

First momentum equation: The second equation of (5.29) has the form

oU 200U U?dp 00 Wou UOW UWOdo

EJrg@xiQ@er %+g8z+gaz 02 0z
After applying the implicit Euler method, we obtain

8Un+1 8Un + 2Un+1 aUn+1 (Un+1)2 8Qn+1 + RaonJrl
T T ot Ox (omt1)2 Oz ox
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Wn+1 8Un+1 N Un+1 awn+1 B Un+1wn+1 aQnJrl 0
‘Qn—i-l 82 Q”+1 82 (Q7n+1)2 82 :

Thus we obtain

)

Dea e

190 18<p§-’] -

(10 18@0] v

W oU Uow
MERAAYEE R YN INY (1 QU_/UW :
Q Q2 az( )SDJSO’L +/(\2 92 82( )@]SDZ Q 93 azgp] QQ az L)07,
Analogously,
aFiU: ﬁ U+/g @@U Ua(pg] U_/g@ U_U
oy o1 " oo |0z dx | " 02 9z

Wi 4 LW v v Woo v v
+ Lo 0z 7 +/QE§%'% —/Qgg%%w

w
OF7 :/ laﬂwwwv+/ U 9%; U_/ Udo w,u
5y]W o0z T Qo 0z ' Q020277 T

0
OF :/Ra%@U,

Second momentum equation: The third equation of (5.29) reads

oW WoU UOW UWadoe 2WOW W20 00
= - T - 24 R+ og=0.

ot o Ox o Ox 0% Oz o Oz 0% Oz 0z
After applying the implicit Euler method, we obtain

awn+1 awn Wn+1 6U”+1 Un+1 6wn+1 Un+1wn+1 8Qn+1
T T ontt Oz ot 9x ()2 Ox

2wn+1 awn+1 (Wn+1)2 8Qn+1 aen+1

_ R n+1 =0.
ot 0z (omt1)?2  Ox + 0z tetyg
Thus we obtain
OFW W oU U oW 2W oW
i — 2 1D Z 2 (D)l - 2 e W
57 + L gy (THejei + 7 5, ("L el

Lo , 1097] 2 190 , 109
(—2)5%%4'?% ®i —/QW (_2)55%—’_?@

vl + /Q gpse] .

—/UW
Q

Analogously,

OFWV wogY 1OW o w Wdo v w
= — % o Pi% T | o PP
3ij oo Oz Qo dx ™ o 0* 0z
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an'W:/% W / W Qa% oW /U&Q W W
6y}’v 0 EraEig Q0 or * 2 g Fa P

W w 207 | w 2W e w w
s [az P el [ S gt

OFW / d¢!
= | R2ol.
dy? 0z

Internal energy equation: The last equation of (5.29) has the form

00 0
a5t +div(fv) + Jj—vdivv =0
where 6 = oT'. This can be written equivalently as
00

% + V0 - v 4+ v0divv = 0.

Written in terms of single derivatives, this is

00 00U o00W 98<U>+98<W>:0’

E+8x9+82g 7 oz

el v o G
ie.,
00 00U 00W 0 oU oU 0o 0 oW oW 0o

§+8x9+8zg+ gax 7?%—&- 0 0z 7?@:
Weak formulation:

9n+1 on 39n+1 Un+1 aanJrl Wn+1
FO(Y) = o [ / 0 / WrT o
K3 ( ) /3:) ‘Pz Q <p’L + Q am Qn+1 901 + Q az ,Qn+1 <p’L

T

i =0.

+ / 9n+1 aUn+1 0 / 9n+1 Un+1 8Qn+1 p / 9n+1 8Wﬂ+l 0 / 9n+1wn+l 8Qn+1
Q’Y‘QnJrl or Yi ] v (o2 oz 79n+1 9, Y (012 a2
For the derivatives of the weak form we obtain:

oF? BU , 4 @[99_/ gaﬂge_/ 0 oW
ay]g 8mg2<p3% Qaz QQSD] Q’YQQ 833901901 Y= 2 9z SOJSO'L

Uag ot / oU 5 o / OW do , 4 oW #5
— L DR AP I AL B
Jr/Q Y% 29,7 iR L R

7

OFf _ [901 4 4 /esagfe / 0 0o y o4
8yj o Oz Q@j ©; + Q’V;%% 97?%% ;-
OFf [ 901 0oy 0 0 w o
8y}/v 5‘29% ©i +/Q’YEE% _/QVE&%‘ i

’YaUee/jaWee_/L@ee/ﬂ@ee
+/5195$%%+ Q0 0z i q 0 535%% o 0° 32%%.
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CHAPTER
SIX

QUANTUM FIELD THEORY AND
QUANTUM MECHANICS

6.1 Introduction

The aim of these (work in progress) notes is to use the Standard Model of particle physics to derive all equations in
quantum mechanics (and quantum field theory) that we need for our research.

We start by deriving the electroweak Standard Model from the SU(2) x U(1) symmetry and couple other (standard)
assumptions in the quantum field theory. After that, we only want to derive things and make nonrelativistic limits or
other approximations in order to derive everything else in quantum mechanics. In particular we show how to derive the
Dirac and Schrodinger equations (as a low energy limit). We then show some particular ways to solve those equations,
like perturbation theory, scattering theory, ...

The goal is to have a complete theory on about 30 or 40 pages and then lots of examples (arbitrarily long), that use the
theory (but do not develop new ideas), so that one can learn how the theory works from the examples. For instance,
one can ask “why is there the term (p — eA)? in the Schrodinger equation for electromagnetic field, why this and
not something else?” or “why is there the o - B term in the Pauli equation?”, to find the answer, one just finds the
Pauli equation in the theory and then looks at the derivation, so in this case one quickly finds that it follows from
the minimal coupling in QED, e.g. it’s the easiest way how electron-foton interaction can be coupled, e.g. the U(1)
symmetry. Nice thing about QFT is that one can find really nice geometrical reasons why things are that way and not
some other way (just open any advance book on QFT), but the problem is that basically nowhere is some easy (but
correct) translation of those results to regular QM, so that everything fits into just couple dozens pages, so that it can
serve as a reference.

The advantage of this top-down approach is that it is easy to see where things come from and also to understand exactly
what approximations one is using when dealing with any equation in QM. However, as is well-known in physics, to be
a good physicist one has to understand all the approaches, e.g. both top-down and bottom-up and all other approaches
to QM and QFT, because there are no two approaches that would be 100% equivalent, so one has to use the right
approach for the particular problem. So these notes do not aspire to be the right way to teach QM, but rather to serve
as a reference to get quickly oriented and to find the equations to start from.

6.2 Standard Model

6.2.1 Electroweak Standard Model
Lagrangian with a global SU(2) x U(1) symmetry:

_ _ 1 _
£ =iLWy,0" LW +ilgy,0'lp + 10,070 ® — m*®* D — ZA(<I>*<I>)2 — hLO®ep — hec.

105



Theoretical Physics Reference, Release 0.1

where I =e,p,7anda =1,2,l; g = (1 F 75)l and

10— ( Yoo
L

Local SU(2) x U(1) symmetry: This consists of two things. First changing the partial derivatives to covariant ones:

1

o= D' =0 — o

g AL — %g'YB“
and second adding the kinetic terms
1 a auv 1 v
_ZF;WF By ZB‘“'BM

of the vector gauge particles to the lagrangian.

FS, = 0,A5 — 0,A% + ge"™ AV AS,
B,, =0,B,-0,B,
i.a a 0
P=ev™ (z)7
€ ( 5 (v + H(z)) )
This breaks the gauge invariance. The 97 are going to be added to A, so we can set 7, = 0 now.
Higgs Terms

1
Liiggs = 50,0*0"® — m*®*® — ZA(@*@)Q

Plugging in the covariant derivatives and ® in U-gauge (symmetry breaking):

2

1 — T¢ - T¢ v
Liigys = 5<1>+( 0, + igAZ7 +ig'YB,) (0" + z'gA““? +ig Y B")® — \(®T® — 7)2 —
— a - @ 2
= of(0, + igAZ% +igYB,)(" + igA‘“‘% +ig'Y Bu)®y — N®Fdy — %)2 -

1 1
= 50, HO"H — M?H? — WwH? — iAH4+

B A HiAT Al — A%

+ 2+4y2 /2
NG 7 (g g9°)

—I—l(v + H)? (29 9gAL —2Yg' By g A% — QYQ’B“> _
8

\/92 +4Y29/2 \/92 +4y2g/2

1 ) 1 1 _ 92
= —9,HO"H — MW>H? — \wH® — ) \H* + = H)? (| 247 tr Z. 7" =
23“ 0 Av v 1 + 8(1} + H) gW, W+ cos? Oy 20

1 1 g*v? 1
= 29, HO"H — M?H? + Z¢?0*W - Wth 4 27 7t _ \pH® — ~\H*
9 n VT g T S cos? by " Y M

106 Chapter 6. Quantum Field Theory and Quantum Mechanics



Theoretical Physics Reference, Release 0.1

2 2

| — g 1 - g
“vg?W, WHH + ——Z,Z'H + W, WHH? + ——— 7, 7" H?
+21)g K +4C089Wv H Jr49 H +80059W K
Where we put
1 }
Wi = 72(14,5 FiAD)
— #Aff _ LQ/B
® /92 +4Y2¢ K /92 +4Y2g s
we defined 0y, by the relation
g
cosby = ———
w /92 + 4Y2g/2
so that the expressions simplify a bit, e.g. we now get:
2Y g
sin Oy = =9
/g2 + 4Y 2g72
Z,, = cos HWAi — sin Oy By,
2
2 2 12 g
4Y =
g+ 9 cos? Oy
Yukawa terms
EYukawa = —heifl)eR —hec. = —heE(I)UeR —h.c. =
1h(+H)(‘ + érer) 1h(+H)—
=———he(v ere erer) = ———=he(v ee =
NG LER T EREL 7
1 1
= ——hevee — —h.éecH
V2 © V2 ©

The term L®ep is U(1) (hypercharge) invariant, so

Y. +Y+Yr=0

Leptonic Terms
L= uiwa#L +iery"Ouer —

— 1Ly (9, — igAZ% —ig'YLB,)L + iegy* (8, — ig'YrB,)er =

6.2. Standard Model
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= iLy"9,L + iepy" O, er + gDy“%LAZ + ¢ YLIN*LB,, + ¢'Yréry"erB, =

_ 1 - _
= iLy"0, L + iegy" O er + i(DLfy“eLWj +he)+ §gL7HT3LAi + ¢ YL Ly LB,, + ¢'Yréry"erB, =

V2

= vy Oy + ey 0 e + %

7

+QIYLDL’Y#VLBM + g’YLéL’y“eLBH + g/YRéR’}/’ueRBH =

1 1
(DL’y”eLW; +he)+ igf/L’y“VLAz - igéL’y”eLAz

=iy ouv +iey" o e + i(17L’y”eLI/V#+ +hec.)

V2
+ [(3gsinbw + Yig' cosOw )y v + (—3gsinbw + Yog' cosOw)epy*er + Yry' cosbweryter) A,
+ [(%g cos By — YLg/ sin ow)ﬁL’Y#VL + (*%gCOS Ow — YLgl sin HW)EL’W@L - QYLg/ sin QwéR’yﬂeR] Zy,
Where we substituted new fields Z,, and A, for the old ones Ai and B,, using the relation:

Z,, = cos HWAi —sin Oy By,

A, =sin QWAi + cos fw By,

The angle 0y must be the same as in the Higgs sector, so that the field Z,, is the same. We now need to make the
following requirement in order to proceed further:

Y =-Yp,

This follows for example by requiring that neutrinos have zero charge, i.e. setting % gsinfy + Y,¢' cos Oy = 0 and
substituting for Ay from the definition (see the Higgs terms), from which one gets Y = —Y,. From =Y, +Y +Yr =0
we now get

Y = 2V,
it now follows:
1gsinfw + Yrg cosy =0

—1gsinOw + Yig' cos by = —gsin by

Yrg' cos Oy = —gsin Oy

/

tan Oy, = —2YLg—
g

and the Lagrangian can be further simplified:

L =ivpy"o, vy + iey' o e + %(DLv“eLWJ +he)

V2

—gsinbw(ery'er, + ery'er)A,

[%ﬁL’y#VL + (7% + sin? GW)EL'y“eL + sin? QwéR’yueR] Z/L =
cos Oy

9

22

(9" (1 = ys)v + &y (=5 + 2sin® Ow + 75)e] 2,

=iy ouvr +iey" o e + (oy*(1 = ’}/5)6le +hec.) —gsinfyeyteAd,

2 cos Oy

Where we used the relations 7,y e;, = 07" (1 — v5)e and vryer = Lvy" (1 + y5)e .
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Gauge terms

1 1
[-:Gauge = _ZngFaﬁw _ ZBW)B#V =

1 T 1
= =1 (0uAy = O, Al + ge™ AL AD) (DM A — Y A 4 geTRATMARY) — S By, B =

1

a av ]' 1% 1 a a aoc cv 1 abc _aj c v
= OuALOMA™ — 2By B — (0, AY - 0, A7 )ge be pbr gcv Zg% beerih Ab AG ARt Al =

1

1 1
= —iw};wﬂw - ZAWA‘“’ - ZZWZ’“’ —gl(0u A, — 0, A},) A* A* + cycl. perm. (123)]

1
P l(Ag AT (AL AY) — (A AT) (A A™)] =

11 L1 , o
fiVVWWJ”‘ - ZAWA” - ZZ‘WZM - g[A}LAz d " A3 + cycl. perm. (123)]
1 a a v a a 17
—192[(14“14 H)(ALAY) — (AL AL (AP AP)] =
= Ly Xy am Z g g wow Gt 4 ey 0
= oW — 74w = 1 Zu —ig(W, W, + cycl. perm. (0-+))
TWTEY? — S(WEW YW, W) + (WIWO(WIW ) — (W, WH(WHW) =

(S o1 i}
= —§Wﬂyw+“ - ZA;WA“ - ZZWZ” + Lwwy + Lwwz + Lww~y + Lwwww + Lwwzz + Lwwz,

Where W) = A3 = cos 6w Z,, + sin A, and:

Lovwy = —igsin by (AW, 8 "W+ + cycl. perm. (A W~ WH))
Lwwz = —igeosw (Z, W, 9 PWH + cycl. perm. (Z W= W+))
Lywway = —g°sin® Oy (W, WHHA,AY — W AHW,FAY)
Lwwww = 59> (W, WHFW W — W WHW, W)
Lwwzz =—g° cos® Ow (W, WHHZ,2" — W, ZFW FZY)

Lywwzy = g°sinby cos Oy (—2W, WA, Z" + W ZFWFAY + W, AFW,FZY)
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GWS Lagrangian

Plugging everything together we get the GWS Lagrangian:

c=Lto.morm - e 4 L2 wowen 4 G el amts
27t 4 " 8cos2 @y 4

2

| 92 1 - g
—vg? W WHH + ——vZ,Z"H + -¢*W_ WH? + —~ 7 Z+H?
—|—2vg i +4COSHWUl +4g ® +800$9W "
1 1
——hvée — —h.ecH
V2 V2

1 o1 i}
—§W,WWW - EA””A# — —ZwZ" + Lww~ + Lwwz + Lwwyy + Lwwww + Lwwzz + Lwwzy
+ivpy" O, v + eyt oue + 2"%(97“(1 —75)eW,f +he) —gsinfyeyteA,

[177“(1 —y5)v + é'y“(—% +2sin? 0y + %75)8] Z,

2 cos Oy

+(e, Ve, he <> 1,V hy) + (€, Ve, he 3 7,07, hy)

The free parameters are g, Oy, v, A, he, by, by

Particle Masses

The particle masses are deduced from the terms

1 1
L= —§m%1H2 + m%,VWM_Wﬂ‘ + §m2ZZMZ“’ —meee+ -

comparing to the above:
2,2

1 g-v 1
— 2772 2 21— 147+ >
L=-\W"H +1g W, W u+800829 ZMZ”fﬂhevee+~-

we get
my = %gv
gu mw
m = =
27 9cos Ow  cosbOy
myg = vV 2\
1
Me = —=hev
V2
1
m# ﬁhﬂv
1
m; = —=h;v
V2

Note that those are the bare masses (e.g. in order to obtain the real mesaured masses of the particles, one has to

renormalize them by calculating the higher order corrections given by the loop diagrams).
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Parameters of the Standard Model

The free parameters are g, Oy, v, A, then three masses of the charged leptons he, h,, h., six quark masses and four
parameters of the CKM mixing matrix, which gives 4 + 3 + 6 + 4 = 17 free parameters (if one allows for three neutrino
masses and the corresponding four mixings parameters, one gets 17 + 3 + 4 = 24 free parameters).

They can be traded for other physical parameters (see below), but their numerical values are not predicted by the
theory, so they have to be measured and their experimental values are approximately:
g =0.631
Ow = 28.67°
v = 246.218 GeV
02<A<40
he = 2.929 KeV
h, = 0.6065 MeV

All the parameters have been measured quite exactly, except .

Other physical constants can then be calculated using the formulas:

my = %gv =77.7GeV
mw

my = = 88.6 GeV
cos Oy
myg = vV 2X = from 150 GeV to 700 GeV
1
me = —=hev = 510 KeV
V2 ©

1
m“ = %hu’l} = 105.6 MeV

1
Gp = —— = (1.16639 £ 0.00001) x 107° GeV 2
F= oo ( )
e =gsinfy = 0.3
_ 1 2 1.2 - 1
o= 471_g sin” Oy = 137

Quarks
Efermion'i_: Z iz’éq)’y”au[/(()q) + Z iQOR’YHaNQOR
q=d,s,b q=d,u,s,c,b,t
Ly ukawat= — Z hqq/if/é'I)fI)q{)R +he — Z qu/if/((f)i)q{m +h.c.
; ’::(2 ,Ssy,l; qq/::i’ ,S . ,b t
6.2.2 QFT

Field Operators

The free (non-interacting) fields in the interaction picture are expressed using the creation and anihilation operators
below, also the corresponding non-interacting Hamiltonian is shown.
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The general idea behind the machinery is that the field operator ¢ (x) = 5° & Vi (X)cy is constructed as a sum (or an
integral, depending on if the index k is discrete or continuous) of single-particle wave functions (i.e. solutions of the
noninteracting equation of motion) multiplied by the creation/anihilation operators (¢ or CL) that create/destroy the
particle in the given single-particle state. Note that the noninteracting equation of motion usually means that we set
all potentials (interactions) as zero, but in principle it can be any equation that we can solve exactly.

The coefficients 15 (x) don’t depend on time (so neither the field operators in the Schrédinger picture), but we work
in the interaction picture, where the creation/anihilation operators depend on time, and the time dependence is put into
the exponentials below (but the integration is still done over the spatial components of p only).

Scalar bosons:

where:
[ap, al] = (27)*6 (p — q)

(all other commutators are equal to zero). The equal-time commutation relations for ¢ and 7 are then:
[6(x),7(y)] = 6P (x —y)

(all other commutators are equal to zero).

The Hamiltonian is

(27)3 P
Fermions:
dgp 1 2 s s —ip-x st .8 ip-T
i) = [ e D G () + () )
P s—1
_ By 1 2 . _
di(a) = wl(en = [ (45 (B)e ™ + byl (p)e'”)
(277)3 QEPSZZI P P

where

VP - o¢’
o (p) = [ VP I
(p) (_ Wns>
2
> ui(p)a‘(p) =p+m

> vi(p)vi(p) =p-m
s=1
{05031} = {dy, g} = (2m)*0®) (p — @)™
(all other anticommutators are equal to zero). The equal-time anticommutation relations for v and ¢/ are then:
{#a(0). 0] )} = 0% (x = ¥)0us
(a0, 1)} = {010, 6} (v)} =0
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The Hamiltonian is

d3p & stps st 75
H = / (2m)3 Z:l Ep (bp'bp + dy'dy)

and the total charge:

d3p 2 sT1s st 78
Q= / (2m)3 Z (bp bP o dP dp)

s=1
So the b-type particles and d-type particles are identical except the charge. In QED, we identify the b-type particles as
electrons and the d-type particles as positrons.

Vector bosons:
3

d3p 1 o —ipz | ot r ip-x
Aul@) = / (2m)3 \/2E, ;0 (apeu(p)e PE+ apTeu (p)e’”)

where
[ap, ag] = (2m)*6®) (p — q)6™
The equal-time commutation relations for A,, are then:

[AM(X)v A:L (Y)] =5 (X - Y)6uu

Calculating Scattering Amplitudes using Green Functions

We are interested in calculating the following scattering amplitudes:

(f18)

where the initial |) and final | f) states are created by creation operators of the fields from the previous section. For
example

i) = bibh )
|f) = bl,bL, 1)

Depending on the particular creation and anihilation operators, it can be shown that they can be replaced by:

af i — i/d%e“” (0% +m?) ¢(x) = Mé(—k) = Dzk)qg(—k)
o 1 [ e (04 m) (o) = E008) = i)
b1 [ @) (17 m) e = ) T = D) g
o =1 [ e 0) (-4 m) (o) = 0 ) = 00 7w )
Bl s =i [ atac 500 (ig +m)vi) = <000 (8 = <5700 o)
o= i [ dhad(@) (1 + m) o*()e ™ = (k) 00 = bk 5 (i Y

. k2 .
a:r in — 1€, (k) /d4zelkz82A“(x) = e;*(k)TA’L(—k)

2 ~
afy oue — i€, (k) / dze kT2 AN (1) = e;(k)]%A“(k)
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where the “in” is the operator for t — —oo and “out” for t — co. The fields ¢(x), ¥ (z), ¥(x) and A*(x) have to be
time ordered. On the left hand side is a position space representation, the two expressions on the right hand side are
the momentum representation (the last expression is written using the propagators), e.g. a Fourier transform, which is
essentially just the following substitutions:
0* — —k?
i) — K
+ikx 7
e o(x) = o(Fk)
k? —m? 1
- - =
! D(k)
+h—m 1

- —
[ S(Lk)

both representations are of course equivalent (but the momentum one is easier to use, since the formulas are shorter).

For our example we get in the position space:
(F1i) = (Qbp bp,, b, b, |0) = (AT by, bp, b, 0}, 102) =

_ Z~4/d4zld4z2d4z1/d4x2/

e v (g% (kg ) (—idys + m)]al/

e P (%2 (Ko ) (—idy + m)]a2/

(T Yoy (@2 ) 8, (@17 P, (21) Py (22)1)
i .

(i1 +m) um ()] e

a1

[(f@_g + m) u®? (pg)} P22

as

where the o, g, a1/ and aor spinor indices were introduced to show how the matrices should be multiplied. The
vacuum amplitude is called a 4 point interacting Green function in position space:

Ggll)/az/alag (xl’v Tor, X1, xQ) = <Q|Tw0¢2/ (552/)1%1/ (1'1/)1/_}&1 (Zl)u_)om (12)|Q>

we can also take a Fourier transform to get the Green function in momentum space:
n
i=1

then the scattering amplitude becomes (resuming the previous calculation):

(fliy=---=1d'

[w™ (kv ) (=pr +m)],,
[@°2 (ko) (—p2r +m)],,
G&‘ﬁi%/alag (p17sp2r, —p1, —P2)
(1 + m) w (p1)],,

[(¢2 + m) u® (p2)]a2
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We can get the same result much faster if we use the momentum space from the beginning:
(fliy = (Qlbp,, bp,, bl b [Q) = (T by, by, bL, bl Q) =

= QT u* (p2) = P(p2)u™ (p1) ¢(p1')12(—P1) Usl(Pl)d;(—Pz) =

1 1
S(P2') S(Pl') S'(—I)l

)
:{W@”mijPﬂ@”ﬂ;Jw

(QUT Gy (P2) sy (P1 )ty (—P1) s (—P2) Q)
1 5 1 u
Ekmﬁ(mﬁlem)(mﬁ

1

a1

This is called Lehmann-Symanzik-Zimmermann (LSZ) reduction formula. One obtains similar expressions for other
fields as well (if there were different creation operators between the initial and final states). All that remains is to
calculate the interacting Green functions (for which we need to know the interaction Lagrangian). But first couple
more examples:

Example 1

v, - e elastic scattering:

ve(k) +e(p) = ve(K') + e(p)
So the initial and final states are:
i) = bLbL 192)
|£) = blbL, 1)
and we get:

(fli) = (Qby bk,bTbHQ) (QT b, bk,bTbHQ)

= [0 H }

mww> K')d(—k )H
H

st }

We only multiply the matrices with the same momentum, i.e. {as(p’ )ﬁ} with ¢ (p’), [ *(K) 3 (k,)} with (k)

and so on. Also we don’t write the spin anymore, e.g. u(k) should in fact be u** (k) and so on.

@u

Example 2

Muon decay:
w(P) = e(p) + v (k') + v, (k)
So the initial and final states are:
i) = b |©2)
|f) = bhdl. bl 1€2)

6.2. Standard Model 115



Theoretical Physics Reference, Release 0.1

and we get:
(fli) = (Qbric bpbh|©2)
_ 1 ) 1
-0 ] [“(p} el
(QIT P (k)P(p)d(K )i (—P)|)
1 , 1
50| [5e®)
Example 3

et + e~ scattering:
e (p1) +e(p2) = e (k) + e (ka)
Initial and final states:
i) = bt |)

P1 P2

If) = by dyl |9)

And we get:
(fli) = (g, di, b dit|Q) =
= (QITby, dy, b dul|) =
= QU o ) g )| |00 )} p) gt on)| | (b)) 1) =
= 1 g(kl) 1 2 ~( kg) 2 P1 S‘( ) P1 P2 S(pg) P2 =
- o] [zt
(QUTP (k) (ko ) (—p1 )b (— pz)\ﬂ>
1
[S< k) o) [5(_,91) o)
Example 4

H(p) — Z(k) + Z(l) decay. Initial and final states:
i) = al, [2)
|f) = ay ‘11]L 1€2)
and we get:
(f1i) = (Qlagaiag|Q) = (QTayaiay Q) =

2 2 _
= (76 () A (R)esr () A1) = D) =

(p
7<Q|Tfl”() Y (D(-p)I2)
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Example 5

ete™ — WTW™ scattering:
e (k) + et (=) =W~ (p) + WH(r)
So the initial and final states are:
iy = bl 192)
|f) = aplafT|0)

and we get:
(fli) = (Qlakaypld’,|0)
- TAm [z ]
(T A° (r) AP (p) b (— k) (1)]©2)
™)
Example 6

WHW~— — W+TW ™ scattering:
W= (k) +WT(p) = W (r)+ WH(I)
So the initial and final states are:
i) = alagt 1)
1f) = agfa)T|02)
and we get:
(fli) = (Qla; aga akl|2)

= 0% e (o) (U7 A5 (1) A ) A7 (-p) A (R0 ) )

Evaluation of the Interacting Green Functions

The interacting Green functions can be evaluated using the formula:

G™ (z1,...,20) = QT o (1) ... o (2,)|Q) =
O|T ¢r(z1) ... dr(xn)S|0)
(0[S]0)

where
S = Ur(oo, —00) = Texp <;L/ Hl(t)dt) =Texp (721 /d4x’H1(x)>

¢m is a field in the Heisenberg picture (d(x,t) = eFtp(x,0)e ) and ¢; is a field in the interaction picture
(p(x,t) = etHotp(x,0)e~ o) where the Hamiltonian is H = H,+ H; and the vacua (ground states) are Hy |0) = 0
and H |Q2) = 0.
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This can be proven by evaluating the right hand side:

OIT ¢1(x1) ... ¢1(2n)S10) _ O[T ¢r(x1) ... ¢1(wn)Us(00, —20)|0)
(0[5]0) (0]Ur(00,0)Ur (0, —00)|0)
(01U (00, 01)61 (1) Us(t1, £2) + - Us (b1, t) b1 () Us (s —00)|0)
(0[U1(00,0)Ur(0, —00)|0)
(0|1Ur(00,0)pp(x1) - .. du(x,)Ur(0, —0)|0)
(0]U(00,0)Ur (0, —00)[0)
_ {012) @[T u(x1) ... du(xn)|) (2]0)
(0[€2) ([$2) (€2]0)
(Q[€)

= (QTon(x1) .. ¢u(wn)l)

where we used the following relations:

Ur(te—1,te)or(xr)Ur(t, te1) = UI(tkflao)U;r(tkv0)¢I(1’k)UI(tk;O)UI(Oathrl) = Ur(tk—1,0)0m (xx)Ur(0, tp41)
n#0 n#0

Ur(0, =00) [0) = Ur(0, —o0) [IQ> QI+ In) (M] 0) = 1) (Q0) + lim > ™" |n) (n]0) = [€2) (2[0)

Q) =1

Evolution Operator, S-Matrix Elements

The evolution operator U is defined by the equations:

|p(t2)) = Ulta, t1) |#(t1))

mM = HH)U(t, t1)
ot
Ulty,t) = 1

We are interested in calculating the S matrix elements:

(fIU(00, =00)i) = (f|Sli) = Sy
so we first calculate U (oo, —00). Integrating the equation for the evolution operator:

to Z to

Ulta,t) = U(ty, t1) — % HOU ()t =1+ [ HOU(H)de
t1 tl
Now:

S=U(co,—0)=1-— %/ HU{#, —oc0)dt’ =

=1+ (—;) /_O; H(t")U(t', —oo)dt’ + (—;)2/_(: /_; H"YH#"U(t", —oo)dt'dt” =
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:...:n O(_) n'/ / T{H(t))H(ty) - Ydtydty - - - =
=Texp (—;L/_O; H(t)dt) = Texp (-2/_(:(1%%(90))

If £ doesn’t contain derivatives of the fields, then H = —L so:
U(oo, —o0) = T exp <;L/ d4a:£(x)>

Let’s write S = 1 44T and |i) = |k1 - - km), | f) = |p1 - Pn). As afirst step now, let’s investigate a scalar field, e.g.
L= 7%(;54 (e.g. a Higgs self interaction term above), we’ll look at other fields later:

1 1

(F1S]i) = {f1iT]i) = (pr - pnliT|ky - k) =

/d41’1 . d4l'm67i(k1ml+m+kmxm) /d4y1 L. d4yn6+i(i)lyl+"'+pnyn)G(x17 e Ty Y1, ,ym)

where

G(zy, - on) = (QUT{(21) -+ ¢(2n) }Q) =

OIT {1 (1) b1 (wn) exp (£ 2, d'aL(x)) }0)
(0|T exp (% ffooo d4$£(1;)) |0)

This is called the LSZ formula. Now we use the Wick contraction, get some terms like D23 D34 integrate things out,
this will give the delta function and D(p)‘s and that’s it.

Let’s see how it goes for £ = —7¢4 for the process k1 + ko — p1 + pa:

fd x1d4m2e—z(k1¢1+k2ab2) fd4y1d4y261(121y1+112y2)

S|kik
(p1p2| S|k ko) = D(k1)D(k2)D(p1)D(p2)

OIT{br(@1)dr(@2) 1 (1) dr(y2) exp (— i [ A2} ())}0) _
(01T exp (=3 [ d*wei(x)) [0)

B fd4x1d4xge*i(k1w1+k2$2)fd4y1d4y26i(p1y1+p2y2)
D(h)b(kz)b(m)f)(pz)

OT{p1(x1)p1(x2)P1(y1)P1(y2)}|0)
(0]T exp (— 4hfd4x¢4 z)) |0)

+

(=% [ d*@ (0| T{r(21)¢1(w2)br(y1)dr(ys )¢‘}($)}|O>+

+ <O|Texp( 4hfd4cc¢4 )| )

+(_%)2fd4$d4y<0|T{¢I($1)¢1(332)¢I(y1)¢I(y2)¢‘}($)¢‘}(y)}|0> Lol

(0T exp (=i [d*z¢}(x))[0)
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1
~ D(k1)D(k2)D(p1)D(p2)

[(27)26) (b1 + p2) (2m)*59) (ke + ko) D(p1) D (k1) +
(=iN6(2m)* 0@ (p1 + pa — k1 — ko) D (k1) D (k2) D(p1) D(p2)+
(—2A)(disconnected terms with not enough f)(- 28) 4 (=N () | =

4 ~ ~
(;W];4D(k)D(p1 +p2 — k) + (—iX)3(--) + - }

The denominator cancels with the disconnected terms. We used the Wick contractions (see below for a thorough
explanation+derivation):

= (277)45(4) (p1 +p2 — k1 — ko) |6(—iN) + 3(—2'/\)2/

O|T{p1(x1)p1(w2)01(y1)D1(y2)}|0) = D(21 — 22)D (Y1 — y2) + D(22 — y1)D (21 — y2) + D(22 — y2)D(21 — %1)
O1T{p1(z1)p1(x2)Pr(y1) D1 (y2)d3(2)}0) = D(x1 — x)D(x5 — 2)D(y1 — x)D(y2 — x) + disconnected
OIT{¢1(z1)p1(x2)d1(y1) b1 (y2) 67 ()67 (y)}0) = D(x1 — &) D(w2 — 2) D31 — y)D(y2 — y) D(x — y)D(x — y)

+disconnected

Where the “disconnected” terms are D(z1 —y1)D(w2 — y2)D(x — x) D(x — ) and similar. When they are integrated
over, they do not generate enough D(p;) propagators to cancel the propagators from the LSZ formula, which will
cause the terms to vanish.

For the £ = ¢3(z) theory, one also needs the following contractions:

(01T{¢r(x1)pr(x2) b1 (y1) 1 (y2) 97 (2)}0) = 0

(01T {¢1(21)br(x2) 01 (y1) 01 (y2) 97 (2) 67 () }0) = D(wy — @) D(w2 — 2)D(x — y)D(y1 = y)D(y2 — y)

Thus it is clear that the only difference from the above is the factor D(a — y) which after integrating changes to

D(p1 + p2) and this ends up in the final result.

One always gets the delta function in the result, so we define the matrix element M ; by:

Sfi = (27‘(‘)4(5(4)(])1 +po4---— ki — ko — )’LMfZ

Propagators for Scalar Bosons, Fermions and Vector Bosons
The only nonzero contractions that can occur are the propagators below. All other contractions are zero.
Propagator for a scalar boson is:

dp - .
Bp)e—PE—y)
2n)i (p)e

wﬂ@@wmmmED@—w=/
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with

For fermions (Feynman propagator):
- d4p B ip(a—y)
O1T{wr(x)r(y)}0) = S(x —y) = /Ws(p)e ip(z—y
with

B i _i(p+m)
p—m+ie p?—m2+ie

S(p)

For vector bosons:

(0|T{A.(x)AL(¥)}0) = Dy (z —y) = / éﬁlﬁw(p)eip(xy)

with

PuPv

~ . T 9uv 2
Dy(p) = i m?
o (P) p? —m? + e

For massless bosons:

Wick Theorem

As seen above, we need to be able to calculate

O01T{¢1(z1) - - r(n)}|0)

The Wick theorem says, that this is equal to all possible contractions of fields (all fields need to be contracted), where
a contraction is defined as:
d4

(01T {61(x)dr(y)}]0) = D(z — y) = / (%1)’4 D(p)e-ivt=—v)

with

~ )
D =
() p? —m?2 + e

A few lowest possibilities:

(0]T{¢r(1)}|0) =0
(O|T{¢1(x1)pr(x2)}0) = D12
O1T{p1(x1)p1(x2)Pr(23)}0) = 0

O|T{pr(x1)Pr(x2)dr(23)Pr(24)}0) = disconnected
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(01T{¢1(x1)p1(22)¢1(x3)dr(x4)P1(2)}0) = 0
(OIT{p1(x1)¢r(w2)d1(x3)pr(w4)$7 () }]0) = disconnected
(OIT{p1(x1)¢r(w2)d1(x3)pr(wa) 97 (2)}|0) = 0
(01T {1 (21) 1 (z2) 1 (w3) 1 (2a)$ () }|0) = 4! D(wy — 2)D(x — ) D(x5 — ) D (24 — x) + disconnected

OIT{p1(z1)pr(x2) 1 (x3) D1 (24) P} ()97 (y) }0) =

= D(xy — 2)D(x2 — 2)D(x — y)D(x3 — y)D(x4 — y) + disconnected

(01T {¢pr(21)d1(w2)d1(x3)1(24)7 ()97 (y)}]0) =

= D(x1 — 2)D(x9 — 2)D(x — y)D(x — y)D(x3 — y)D(x4 — y) + disconnected
For the last two equations, not all possibilities of the connected graphs are listed (and also the combinatorial factor is

omitted).

Nonrelativistic Field Operators

One difference in nonrelativistic quantum mechanics is that the noninteracting solutions to the equation of motion
(Schrodinger equation in this case) can be numbered using a discrete index, so for example the momentum q is not
continuous, thus the (anti)commutation relations for creation and anihilation operators contain the Kronecker delta
(instead of a delta function) and integrals over the index are replaced by sums. The reason for that is that we usually
employ boundary conditions (like a lattice, or one particle potential due to nuclei, etc.) that make the spectrum discrete.

For bosons the field operators are given by:
b(x) = tr(x)er
k
) = D w0
k
where the coefficients are the single-particle wave functions.

[Chs CIT] = O

[k, ct] = [cz,c}] =0

so the commutation relations for 1/3 and 7];* are:

For fermions:
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where

{ck, C;r} =0

{ersa} = {el,cl} =0

so the commutation relations for 1/3 and W are:
{$(x),91(y)} = 6P (x —y)
{(x),d(y)} = {&1(x),4" ()} = 0

The (interacting) Hamiltonian for both bosons and fermions is

iho, [U(t)) = 7 |9 (1))

I?I:T—l-f/:Zc i|T|j) ¢; + ZZC (i|V|kl) erep

ij ijkl

Note the ordering of the final two destruction operators c;cy, which is opposite that of the last two single-particle wave
functions in the matrix elements of the potential (ij|V|kl) (for bosons it doesn’t matter, for fermions it changes a
sign).

Nonrelativistic Propagator

Nonrelativistic limits of the propagators are obtained by assuming |p|/m < 1 (we substitute w = py — m):

p) = — = — — = ~
p>—m?+ie pi—p?—m?+ie (po— /p2+m2) <p0+ /p2+m2>+ie
7 7

(po—m——)(po—&-m—i— >+ie (w—%)(w+2m+%)+ie

~
~

the behavior of the propagator in the vicinity of its positive frequency pole w =~ % is (remember w — 0 in the
nonrelativistic limit):
~ i i 1 i
D(p) = — N o2 S S
(wfﬂ)(W+2m+%)+ze (wf%>2m+ze W — 35— F 1€

Similarly for fermions:

S'(p) _ i(p+m) - i(PO’Yo —Pj’Yj + m) - ii(pow _Pj’Yj +m) B

p2 —m2 +ie p2 —m2 + ie 2m W_%-i-’ie/
_ LZ((W + m)’)/() _pj’)’j + m) N ii(m'yo _pjfyj + m) _
2m w-%—i—ie’ 2m w—%—i—ie’
1 Py
= +1 J)
- <2( = ) 6.1)

_PT
w 2m+ze

The first term

s(n+1)=

o O o
o o = O
o O oo
o O o o
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selects the two upper components of a given bispinor. The second term

Py _ (0 -5z
om ~ \ Ploi 0

2m

mixes the upper and lower components of the bispinor and the contribution of this term is quadratic in - so it can be
neglected. The numerator of (6.1) reduces to a unit matrix (in spin space):

) '
i(30+1) - 52) i

where G(J{ (p,w) is the nonrelativistic retarded propagator defined by:

[ dp dw ip-(x—y) ,—iw(te—
G(}L(x — y) = Z/ (27-[-)3 %G(J)r(pvw)e p-( Y)e (ta—ty)

(For the other pole pg = —+/p2 + m?, we define w = —py — m and we would see that the antiparticles’ propagator
reduces to the advanced Green’s function in the nonrelativistic limit.)

As shown above, the nonrelativistic free propagator is defined by:

d3p dw . )
+ s ‘ - - x — Uy,
Giw—u) =i [ 3 [ oG pw)eyIemiatioty
with:
+ i
Gg (pyw) = 2 .
W — 5 F 1€
If we use the energies of the nonineracting particles £y, = €, = h;]ff = 2’%, we can write it as:
i i
G+ p’w = = "
0 (P, w) w,%jqe w— By + e
SO
Gt hyw) = ———
w— Ey + 1€
using E = hw we can also write:
Gg (k,E) = .
E — B +ic
Other equivalent ways of representing the propagator:
d3pdE

Gi (o= 0) = G (rtasy) = [ UGS (b E)er v ittt =

3
™

Sometimes it’s useful to calculate the mixed representation G (k,t):

dw Ciw dw iw { —i(Ey—ie
L e R e e

(The ““- - -” means to use the Residue Theorem and distinguish two cases ¢ < 0 and ¢ > 0, thus getting the Heaviside
step function 6 in the result.)
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Very often, in practice, one just needs to work with G (k,t) and G (k,w), here is how to convert between those:

> dw —iw
Giho = [ Sre Gl (k)

Gg(k,w):/ dt et G (k,t)

— 00

The relation to the contraction of operators is:
G (k,ty —t1) = —ibh, 4, (Volex(t2)el (t1)|Wo)
where |¥) is the ground state wavefunction and:
cx(t) = eiHot gy e iHot
so to understand the meaning of G (k,ta — t;), we write it as:

G (k ity —t1) = —ib;, ¢, <\I/0|ck(t2)cL(t1)|\I/0> = —i0s, ¢, <\I/0\eiHOt"’cke_iHO(tQ_tl)clT(e_iHotl |Wy) =

= i, ., (e—ngt2 |\I,0>)T (Cke—iHo(tz—tl)cLe—iHotl |\I’o>)

which describes the probability amplitude of adding a bare particle at time ¢, removing at time ¢, and regaining the
original many-body system (that in the meantime evolved into e ~*0t2 | W)

Evaluating the Interacting Green Functions

The Green functions below can either be evaluated using the Wick theorem, or using Feynman diagrams and the
corresponding Feynman rules.

Example 1

Lzza = AZ,Z" H, in the first order:

(QIT A" (k) A (1)$(—p)|Q) = iA(27m)*6(k + 1 — p) D" o (k) D" (1) D(p)

Example 2

Leey = —Aéy* eA,, in the second order:
(QUT (k) ()b (—pr ) (—p2) Q) =
= (—iN)2(271)*3 (k1 + ko — p1 — p2) | S(k1)V*S(—k2) D (k1 + k) S(p2)y” S (—p1)+

(k17" S(=p1) Dy (1 — 1) S(p2)7"S(—k2)|
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Example 3

Lint = ﬁﬂﬂ“(l — ’}/5)€WJ— + h.c., in the second order:

(QIT A (r) AP (p)d(— k)b (~D)|Q2) =

- / dbz dy (0] TA(r) AP (p)d(— k)i (1)

z;ﬁﬂe(x)'y“(l —s)e(x) W, (x)

z‘%\bﬁe(y)v”(l —y5)e(y) W, (y)

0) =

2
(. 9 4,94, 34 35 17 17 i(Pr+pp—kk—Il)
=|1——= d*xd*ydrdpdkdle

(2\/5) / yearar

(O] TA*(7) A% (p) (k) (D)
Te(2)7"(1 = 5 )e(z) W,/ ()
e(y)y" (1 = v5)e(y) W, ()
0) =
= (i2 \g/é) / d*z dy df dp dfi df ¢! Fr+ep—kh—il)

D®,(# = @)D", (p = y)S( = 2)7" (1 = 75)S(z — y)7" (1 = 75)S(k — y) =

2

(. 9 4,34, 15 14 A5 A7 i ((P+z)r+(p+y)p— (k+y) k—(+z)1)

= d*zd*ydrdpdkdle
<12\@> / v

D, (F) D", (P)S (D)7 (1 = 75)S (@ — )7 (1 — 75) S (k) =

D (r) D", (D) S (1 = 75)S (& — )7 (1 — 75)S(k) =

’ eiyr+typ—yk—yl)
Ni) / diyetr
D (r) D", (p)S (Y (1 = 75)S(r — 1)y (1 = 75)S (k) =
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ZZH interaction

Let’s calculate the Lz 7y = AZ,Z" H interaction in the SM, where A = ﬁ. Consider H(p) — Z(k) + Z(1):

(f1S]i) = (fliTli) = (kliT|p) = (Qagaiab|Q) = (QTajata}|2) =
2 12 1

= (QITe (k) ~ AF (k) (1) =AY (1) =—(—p)[2) =
1 i D(p)
= M (QIT A" (E)AY (1)d(—p)| Q)
wD(p)

_ qrke (D) 4 Pk 0
= X 2iN(2m)*0(k + 1 — p) D" (k) D (1) D(p)

;TzrzD(p)

e (ke (1 —igha —ig"" =
- L D0) A@m)*o(k +1 = p)—5=—5—D(p)

= ¢, (K)ey" (ir2m) o(k + 1 — p)g"ag”™
= eL*(k)ei*(l)iA(?w)%(k +1—p)g"
IA2m) 6 (k + 11— p)e) (k)e**(1)

|
-

where we used the fact, that the first order contribution of the A7, Z" H interaction to the interacting Green function
is:

(QUT A" (k) A” (1) $(—p)|2) = iA(2m)*5(k + 1 — p) D* o (k) D** (1) D(p)
eeH interaction

This is only approximate, it will be fixed soon.

Let’s calculate the L.z = —\éeH interaction in the SM, where A\ = = Consider H(p) — e~ (k) + e*(1):

V2
(F1S]i) = (FT i) = (KI|iT|p) = ?i&% 1>

/d4$167im1 /d4y1d4y26+i(kyl+ly2) /d%(*i)\)s(yl —2)S(y2 —x)D(21 — ) =

— (=i @)D (p — k — Da(k)o(l)

where we used the fact, that the only nonzero element of the Green function is

[ e QT emetue) Haelwre(@)H ) 0)
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ee gamma interaction

This is only approximate, it will be fixed soon.

Let’s calculate the Le., = —Aéy*eA,, interaction in the SM, where A\ = g sin fy,. Consider v(p) — e~ (k) + et (1):
u(k)o(l) eu(p)

(71816 = (F1iTli) = (WINTIp) = Zmers 2o

/ dtayemPn / dtydtyset vitu) (0T {e(yr )e(y2) A" (21)}]0) =

(B)o(l) _eu(p)
(F)5(1) Das ()

|

/d4x167"ml /d4y1d4yge+i(ky1+ly2) /d4x(—i>\)5’(y2 —2)y"S(y1 — 2) Dy (21 — ) =

= (2m)*6 W (p — k — Da(k)(=iX)y"v(l)e,(p)

where we used the fact, that the only nonzero element of the Green function is
[ ke 017 el )etve) A° ()l e(e) A (w)}H0) =

= £5(y> — )"S (1 — ) D (1 — )

eeee interaction

Let’s calculate the L., = —\éy"eA,, interaction in the SM, where A = gsinfy,. Consider e~ (p1) + e (p2) —
Y(q) — e (k1) + et (k)

(F1S1i) = (FIT1i) = GrnkaliTlpipa) = (Qbf, di, b, 2 10) =
= (QUTH,, di, b, dih |92) =

— O o ) )] | =0k ) gt o) [ o) g 1) =
- [“’:(k”g(;lﬂ W]

+5(k1 )7 S(=p1) Dy (1 — 1) S(p2)7" S(—k2)|

s ) [s@) -

1
= —X\*(2m)*0(k1 + k2 — p1 — p2) {Ur(kl)’wvs(k?)

m@u(m)wut(m)-f—

+Ur(k1)7uut(P1)(kl_lpl)gvu(m)ﬁ’ws(kz)}
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where we used the fact, that the interacting Green function is in the lowest nonzero order equal to:
(QUT (k1) (ko) (—p1) v (—p2)|) =
= (—iA)?(2m)*0 (k1 + k2 — p1 — p2) | S(k1)V*S(—k2) Dy (k1 + k2)S(p2)y"S(—p1)+

+5(k1 )7 S(—p1) Dy (1 — 1) S(p2)7"S(—k2)|

6.2.3 Low energy theories

Fermi-type theory

This is a low energy (m3, > m,m.) model for the EW interactions, that can be derived for example from the muon
decay:

woo—e F+v,tve
From the SM the relevant Lagrangian is

9 /. - 9 /- -
2\/5(6,7”(1 - 75)1/6‘/[/” ) + ﬁ(y"y“(l - FY5)VILVV,U, )

and one gets the diagram =~ + ,,+ — ¢~ + U, and the corresponding matrix element:

2 —g" + ¢
M = =i [@9,(1 ~ 93)u] S [y, (1 = 75)0)
iM = =g iyl = s )u] =7 g i (1 =350
which when the momentum transfer ¢ is much less than m,, becomes

2

iM = _i8312 [ (1 = s )ul [y (1 = 75)v]
w

but this matrix element can be derived directly from the Lagrangian:

G -
L= —ﬁ[wyﬂ“(l = 75)ul e (1 = v5)¢0,]
with
Gy _ ¢
V2 8myy

This is the universal V-A theory Lagrangian (after adding the h.c. term). Note that the Fermi constant G is equal to
G,.

For the beta decay we get:

_ G
V2

where Gg = G'p cos Oc, Oc = 13° is the Cabibbo angle and f = 1.26.

L [hpy" (1 = fy5)nl[her™ (1 = 75)y,]
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6.3 Quantum Mechanics

6.3.1 From QED to Quantum Mechanics

The QED Lagrangian density is

1
L = P (ihey" D, — mc®)y — EF’“'FW

where
U1
| ¥
Ll
Py

and
;
DI" = 8M + ﬁ@AM

is the gauge covariant derivative and (e is the elementary charge, which is 1 in atomic units, i.e. the electron has a
charge —e)

ELV = a,uAy - aVA/L

is the electromagnetic field tensor. It’s astonishing, that this simple Lagrangian can account for all phenomena from
macroscopic scales down to something like 10~3 cm. So it’s not a surprise that Feynman, Schwinger and Tomonaga
received the 1965 Nobel Prize in Physics for such a fantastic achievement.

Plugging this Lagrangian into the Euler-Lagrange equation of motion for a field, we get:

(ihey" D, —mc*)p =0

0,F"" = —ectbyy
The first equation is the Dirac equation in the electromagnetic field and the second equation is a set of Maxwell
equations (9, F"* = —ej") with a source j# = cyy*1p, which is a 4-current comming from the Dirac equation.

The fields ¢ and A* are quantized. The first approximation is that we take v as a wavefunction, that is, it is a classical
4-component field. It can be shown that this corresponds to taking the tree diagrams in the perturbation theory.

We multiply the Dirac equation by 7° from left to get:

0 =°(ihey" D,y — me?) = °(ihey’(80 + 5 eAo) + ey (9 + 7 eAy) —me*p =

= (ihcdy + ihey’~'0; — AOme? — ceAy — cen®y Ay

and we make the following substitutions (it’s just a formalism, nothing more): 8 = 7%, o’ = 1%, p; = iLd;,
9o =12 to get

(ZFL% + ca'p; — fmc* — ceAy — cea’ Ay = 0.

or:

Zh%/: = (ca’(—p; + eA;) + Bmc? + ceAo)ib .
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This can be written as:

0¢
“ot

where the Hamiltonian is given by:
H = ca'(—p; + eA;) + Bmc? + ceAy,

or introducing the electrostatic potential ¢ = cAg and writing the momentum as a vector (see the appendix for all the
details regarding signs):

H=ca-(p—eA)+pBmc +ep.
The right hand side of the Maxwell equations is the 4-current, so it’s given by:
J* = eyt

Now we make the substitution ¢ = e*imgtcp, which states, that we separate the largest oscillations of the wavefunc-
tion and we get

"=y = cply = ol
it = ey = epla’y = epla’y
Nonrelativistic Limit in the Lagrangian
We use the identity 2- (e*”’w%f(t)> = e~ "Mt (_imc? 4 2)f(t) to get:

L2026#’L/)*au’(/}—m264’(/)*w: %w*%¢_0281w* ii/)—m2841/)*¢=

= (imc* + a)cp (—imc? + a)gp — P00 00 — mictptp =
1., ,0¢ Op* 1 1 0p* 0p

=9 A * U - PP ; - b
me 13U g T ) T a0t G o

The constant factor 2mc? in front of the Lagrangian is of course irrelevant, so we drop it and then we take the limit
¢ — oo (neglecting the last term) and we get

. L 0p op* 1
iy o ¥ (,%)

L=
2m

1 ,
- az * az

D) ¥ oip
After integration by parts we arrive at the Lagrangian for the Schrodinger equation:

Op 1 .
L:. o Y A L ;
ot 2m8<p8g0
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Klein-Gordon Equation

The Dirac equation implies the Klein-Gordon equation:

0 = (—ihey" D, — me?)(ihey” D, — me)p = (W2 c*y#y" D, D, +m?c* )y =

= (h*c*¢" DD, +m?*c* ) = (h*c2D"D,, + m*c*)
Note however, the 9 in the true Klein-Gordon equation is just a scalar, but here we get a 4-component spinor. Now:

DuD, = (0, +ieA,) (0, + ieAy) = 0,0, + ie(Aud, + A0, + (04A,)) — AL A,

[D,,D,| = D,D, — D,D, =ie(0,A,) —ie(0,A,)
We rewrite D*D,,:

DMD,, = g"* D, D, = 0"9, + ie((0"A,) + 2419,) — 2 AM A, =
= 010, +ie((0°Ag) + 24°0p + (9" A;) + 2A19;) — e2(A%Ag + AT A;) =

190V Vo ) . V2 )
— HH : . . i AL . 9, _ L2 pi 4.
0"0, + i3 B + 2z—c2 g +ie(0'A;) + 2ieA*O; = e A A,

The nonrelativistic limit can also be applied directly to the Klein-Gordon equation:
0= (h*c*D"D,, + m*c*)yp =
oV

- (h%zaf‘a# + v + 2iV% +ihec? (D' Ay) 4 2ihec? A9, — V2 — 2P A A; + m2(34> e*f’imCthp =

2a o oV , , , )
= <h28t? — 2rPV2 + 21‘1/a + ZE +ihec? (0" A;) 4 2ihec A'9; — V? — 22 AT A, + m204) e_ﬁ""CZtap =

Cimet (g2, b o, Oy 2 292 : i, 0 OV 2 2050 2 Ad 2
=e " - 4——i — Va4 2V (—— + =) tt——+ A))+2 A'Q; — V4
e (h ( mc t) h%c iV ( mc t) 7 " thec” (0" A;) thec” A*0;

—e2PATA; + m204) p=

= e~ wme’t —2ihm02g + hQa—Z — 2RPV2 + 2Vm£ + 22'Vg + za—v +ihec? (0" A;) + 2ihec® A'0; — V4
ot ot? h ot ot ’ ’

—eQCQAiAi) p=

i 2 0 V2 1 02 i OV V2 iV 0
= _9 2 _—+mct h* h27_v_ v oV _ o
meet <Z ot + 2m 2mc2 0t2  2mce2 Ot 2mc2  mc? Ot
he . he . 2
_galAi _ gAlaZ + LAIAZ ©
2m m 2m
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Taking the limit ¢ — oo we again recover the Schrodinger equation:

2 iR
indoo (Y Lvy EaZA 4! Ala - —A’Ai 0,
ot 2m
we rewrite the right hand side a little bit:
] 2

2
ih=p = (h (9°0; + feé)lA +27 Lo AD; — ; Al A) +V> 0

) PV S i
zhacp = <2m(8 eA )(0; + ﬁeAi) + V) %)

0 1 5
h—p=|-—h"D'D;+V |,
ngpe= (gt DD )
Using (see the appendix for details):
. 2
h?’D'D; = —h%6;;D'DI = —h? (;L(p — eA)) = (p—eA)?

we get the usual form of the Schrédinger equation for the vector potential:
L0 (p—eA)?
h—p=|—"—+4+V
"ot ( 2m + 4

0 = (A*c¢*D"D,, + m*c*)yp =

A little easier derivation:

— (h2C2DOD0 +h262DiDi +m264)w _

h? R
= 2mC2 <27nDODO + %DlDz + émc2) ’l/} =

h2 . h
= 2mc? (QTTL <80 + ;,LeAO) (60 + her) + %77102 + 2 —D'D; > —gme t(p =

52 . . B2
= 2mc? (2m <60 heAO) fme’t <80 — %mc + ;eA()) + %ch + ZleDi) 0=
2 . . . 2
_ 2 —imet (R o r 40 _ * 1,2 l im. _
=2mce & (Qm (8 hmc+ heA ) (80 hmc—l— heA()) + 5me” + 2mD Dz) =

h’ 2A°A h i R
= 2mce mmet [ 209, — ime® — c O 4 ceA® + —ie(avo + A°0°) — ihedo + tmc* + —D'D; | o =
2m 2m m h 2m

, o B2 292 e2¢? ek , O
-9 27ﬁmct . 7DD AO e T 5
me < i ot + tee 2me2 0t2  2me?2 | mc? (5t¢ % )>
L 9 (p _ 6A)2 h2 92 62¢2 ieh , 0
_ 2 _ime?t g b7 eA) —_— -
=2mc’e " ( Zhat 2m teot 2mc? 0t2  2mc? ch (6t¢ ¢ )

and letting ¢ — oo we get the Schrodinger equation:

9 (p—eA)’
No? = (zm + “f’) ¢
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6.3.2 Perturbation Theory

We want to solve the equation:

%h* () = H(t) [¥(2)) 6.2)
with H (t) = H® + H(t), where H? is time-independent part whose eigenvalue problem has been solved:
H° |[n®) = Ey |n°)

and H'(t) is a small time-dependent perturbation. |n®) form a complete basis, so we can express |¢)(t)) in this basis:
= > du(t)e F" n) 63)

Substituting this into (6.2), we get:

5 (it 0) + En(0)) e # P24 10) = 3 (B4 0+ H'd(0) e H5¢ o)

n

SO:
d K2
S ih (d(8) e BB n0) = 37 dy (H)e I HY [n°)

Choosing some particular state | f°) of the H° Hamiltonian, we multiply the equation from the left by (f°| en Byt

. d zwn 0 “Uw 0
Xn:zha(dn(t) it ( fOIn0) Zdn it (O H n?)

B =B e 0],,0
where wy, = —f5—". Using (f°|n”) = 0sy:

ih df Zd et (O H Y nf)
we integrate from ¢; to ¢:
i ((d; (1) — dy(tr)) Z / oy ()5t PO (¢ n0) di!

Let the initial wavefunction at time ¢; be some particular state |¢)(t1)) = |i) of the unperturbed Hamiltonian, then
dn(t1) = 6p; and we get:

t) = dpi— nZ/ et (O (t)[n®) dt 64

This is the equation that we will use for the perturbation theory.

In the zeroth order of the perturbation theory, we set H'(¢) = 0 and we get:

dy(t) =6y

In the first order of the perturbation theory, we take the solution d,,(t) = d,; obtained in the zeroth order and substitute
into the right hand side of (6.4):

.t
¢ i ’
A0 = b= 5 [ e O 1) ar
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In the second order, we take the last solution, substitute into the right hand side of (6.4) again:

. t
df(t) = 5fi + (_;) / ei’u}fit' <f0|H1(t/)|Z-O> dt/+
ty

. 2 t g
F(g) X [ar [ aveet o e ol @)
n Yt t1

And so on for higher orders of the perturbation theory — more terms will arise on the right hand side of the last
formula, so this is our main formula for calculating the d,, (¢) coefficients.

Time Independent Perturbation Theory

As a special case, if H' doesn’t depend on time, the coefficients d,, (¢) simplify, so we calculate them in this section
explicitly. Let’s take

H(t)=H® 4+ ¢/"H*

so at the time ¢; = —oo the Hamiltonian H (t) = H? is unperturbed and we are interested in the time ¢ = 0, when the
Hamiltonian becomes H (t) = H® + H" (the coefficients d,,(t) will still depend on the 7 variable) and we do the limit
T — oo (this corresponds to smoothly applying the perturbation H! at the time negative infinity).

Let’s calculate df(0):

; 0
000 =0r+ (721) / erter dt' (fO|H'|i%) +

—o0
7 2 0 ¢ . "o st
+ (_h) Z/ dt/// dt/el’u]fnt emum-t 6/7647 <fO|H1|n0> <n0|H1|iO> —
n J—00 —00

) 1
=y ) (9 g0
f+( h>i+iwﬁ<f| i)+

+(5) T —

% + Wn; % + Wy + Wh;
Taking the limit 7 — oo:

50) = 35 (=3 ) - (1) +

2
H(o3) Tom oo GO ) =

Wni Win + Wni

(fO1Hi%)

R - R

(FOLH ) (0| [i0)
*; (B — E9)(E9 — EY)
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Substituting this into (6.3) evaluated for ¢t = 0:

[4(0)) =Y dn(0) [n°) =

n

%) (n°|H'|i%
= |Z Z EO EO +

+Z [n%) (n®[H [m®) (m°|H'[i%)
EO E?)(En_EzO)

The sum ) is over all n # 4, similarly for the other sum. Let’s also calculate the energy:

E = ($(0)[H[(0)) = ($(0)|H® + H'|¢(0)) =

(@1 H ) (] g 0 n?%) OIHllZ )
W + <Z ‘ (H + H |Z Z EO + -
n'#i g n#i

To evaluate this, we use the fact that (i°|H°|i%) = E? and (i°| H?|n") = E¥5,,;:
(i0H[n®) (n|H'|i°)

E:E?+<10|H1|i0>—z 50— EO 4=
nti n i

OHl 2
n#i

Where we have neglected the higher order terms, so we can identify the corrections to the energy E coming from the
particular orders of the perturbation theory:

B} = (°[H°)i°)

Bl = (| H'|)

K O\H Hi%) 2
Z EO
n#i
6.3.3 Scattering Theory
The incoming plane wave state is a solution of
Hy k) = Ey [k)
2
with Hy = 2. E.g.
(xfle) = e
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2.2
Ek:hk

2m

We want to solve:

(Ho + V) |[¢) = Ej [¢)
The solution of this is:
1

v =)+ 5

Vi) =[k) + GV |¢)

where

1

= 5

is the Green function for the Schrodinger equation. G is not unique, it contains both outgoing and ingoing waves. As
shown below, one can distinguish between these two by adding a small ie into the denominator, that moves the poles
of the Green functions above and below the z-axis:

1

G T e

t T B — Hy +ic
1

G =——

Ek—Ho—’iE

Both G and G_ are well-defined and unique. One can calculate both Green functions explicitly:

1

Gi(r,r) = (r|Gy]r') = (r| Er — Hy + ic

v') =

:/d%IM /d3k/€ik/'(r_r/)_ 2m Br ik’ (r—r")

Ey — By +ie Ek—Ek/—l-ie_hz k;Q—k;/zJ,_ie
4 oo ik’ |r—r’| 4 ik|r—r’|
:27r7m/ Br' o 2b7rm (2m,)k67:
il —r'| J o k? —k'° +ie  h7ir —r| 2k
47r2meik|r7r'|
R
1 4m2metklr—x'|
G_(r,x)={r|G_|t") = (| ——— 1)) = . =
(v.1') = (CIG- ) = {x] - ") e

Assuming |r'| < |r

, we can taylor expand |r — r’|:

r—r|=e " V|| = (1 V4 (V)10 (7“’3)) | = x| =1/ - V|r| + O (+2) =

=r—1-#+0(r?)

and simplify the result even further:
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2 —ikr
_ 4m°m e eikr/,i

G_(r,r') = P

Note: both functions may be divided by the factor (27)® due to the momentum integration.

Let’s get back to the solution of the Schrodinger equation:
[¥) = [k) + GV [¢)

It contains the solution |¢)) on both sides of the equation, so we express it explicitly:

V) = GV ) = |k)
1
=——7rIk
R AL
and multiply by V:
v
=——|k)y=T1k
Vi) =ty =TI
where T is the transition matrix:
=VH+VGVH+VC VGV 4+ =
1 1 1
—V+V

— V4V v
Ey — Hy + e + Ey, — Hy+ie Ep— Hy+ e +

Then the final solution is:
) = [k) + GV o) = [k) + G4 T[K)

and in a coordinate representation:

wwzmw=mm+maJm=@m+/¥wmawwﬂﬂm=
:Mm+/¥M%WWHﬂ@%NMﬂm:

:akhﬁ/&w&yGAnﬂpmwwywm>

Plugging the representation of the Green function for |r'| < |r| in:
47T2m 6ikr
hoor

l/J(r) _ eik‘r 4 /d3r/d3k/e—ikr/~f'eik'~r/ <k/|T‘k> —

. 4 2 ikr . . o R
_ e'Lk~r + 7Tth € /djrldsklen‘ (k' —Ek+) <k/|T|k> _
r

_ A2 ikr
eter 4 TR [ WS — k) (ITIK) =
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ier | Amim oethr
=elkr 4 2 (kzr|T|k>
L. 1k7
= &7 1 1(0,9)
where the scattering amplitude f (0, ¢) is:
472 47T m

(K'|Tk)

1(0.0) = = (kE[T(k) =

Where k’ = kf is the final momentum.

The differential cross section 1 is defined as the probability to observe the scattered particle in a given state per solid
angle, e.g. the scattered flux per unit of solid angle per incident flux:
do 1 dn r2 dn _7"2 dn_rz, r?

: |JO I'—

- = oA = T = w758 = T Jo
dQ  [5[dQ i r2dQ [ dS il e

= 5 (5 73 ) FO0F = (15 ) .0 = L0 0

where we used |j;| = -~ and

b oo P _
Jorf = 5= (U'VU— 9VY) - E = 2(w¢ Vs w)

efik:r o ez’kr eik’r o

o (10.057) - 10,0 m(f*(e,@ﬁ”)) _

hk 7
(5t s ) 0007

Let’s write the explicit formula for the transition matrix:

2msi

(K'[Tk) :/d3r (K'|r) <r\V\k>+/d3rd3r’ (K'|r) (e[ VG ') (¢ |VIK) 4 - - =

zk\r r'|

/dSTez(k k')- rV /dg’/‘dS —ik’ rV( ) V(r/)eik-r’ 4=

v — /|

The Born approximation is just the first term:

(K'|T|k) ~ / Breldk) Ty (p) = / dr df de ' <0V (r)r? sin§ =

= 47r/0 rV(r) sin(gr) dr
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6.4 Systematic Perturbation Theory in QM

We have
H = Hy+ e “MH,
where the ground state of the noninteracting Hamiltonian Hy is:
Hy [0) = Eq |0)
and the ground state of the interacting Hamiltonian H is:
Then:
H|Q) = (Ho+ H1) ) = E[)
(0lHo + H1[$2) = E(0[€2)

Eo (0]Q) + (0[H1|©2) = E(0|$2)

_ (0] H1[$2)
E=FEy+ 7<O‘Q>

‘We can also write

9) = lim U.(0,~00) o)

where

ot
Uc(t,to) = T exp (—;_l/ dt'e= "' 7, (t'))

to
Let’s write several common expressions for the ground state energy:

B Q) O, o))
AE=E-Eo= "0y = 0[U0. =)0
OILU(t,—00)0) . (0idsU(t,—0)[0) . 0y (O[T (¢, —0)[0)

= lim = lim = lim =

t—0 (0]U (¢, —00)|0) t—0 (0|U (¢, —00)|0) t=0  (0|U(t, —o0)|0)

d
= lim 0, log (0|U (¢, —00)|0) =  lim i—log (0|U(¢, —00)|0)
t—0 dt

t—oo(1—1ie)

The last expression incorporates the € dependence of U, explicitly. The vacuum amplitude is sometimes denoted by
R(t):

R(t) = (0|U (¢, —00)[0)
The two point (interacting) Green (or correlation) function is:

(01T ¢(x)¢(y)U (00, —00)|0)
(0]U (00, —00)[0)

G(x,y) = (QTo(z)p(y)|Q2) =

The ¢ — 0 limit of U, is tacitly assumed to make this formula well defined (sometimes the other way ¢ — oo(1 — i¢)
of writing the same limit is used). Another way of writing the formula above for the Green function in QM is:

(0T ex (f2)e, (1)U (00, —0)[0)
(0]U (00, —00)[0)

G(ki ko, ta —t1) = i (Q|Tex, (t2)el, (81)|2) =i
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Last type of similar expressions to consider is the scattering amplitude:
(U (00, —0)[i)
where the initial state is let’s say a boson+fermion and the final state a boson+antifermion:
iy = iy’ [0)
|f) = alag [0)

This is just an example, the |) and |f) states can contain any number of (arbitrary) particles.

6.5 Appendix

6.5.1 Units and Dimensional Analysis

The evolution operator is dimensionless:

U(—00,00) = Texp (; /Oo d%ﬁ(m))

— 00

So:

[/OO d4:c£(:c)] =[h] = M°

where M is an arbitrary mass scale. Length unit is M !, so then
(L)) = M*
For the particular forms of the Lagrangians above we get:
[mee] = (m*Z, 7" = (m*H?] = [iey"d,e] = [L] = M*

so [ee] = M3, [Z,Z"] = [H?] = M? and we get

2] = [2"] = [H] = [0,] = [0"] = M*
Example: what is the dimension of G, in £ = — [, 7 (1 = 75)1][e* (1 = 75)¢h,.]? Answer:
[£] = [Guiip)]
M* =[G IMEMEMEM*S
(Gy) = b

In order to get the above units from the SI units, one has to do the following identification:

kg — M*

m— Mt
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s—> Mt

A— M!

The SI units of the above quantities are:

kg%

3
= = M2
Ams

[¥]

The SI units are useful for checking that the ¢, e and & constants are at correct places in the expression.

6.5.2 Tensors in Special Relativity and QFT

In general, the covariant and contravariant vectors and tensors work just like in special (and general) relativity. We use
the metric g, = diag(1,—1,—1,—1) (e.g. signature -2, but it’s possible to also use the metric with signature +2).
The four potential A* is given by:

Al = <¢,A> = (A%, A}, A2, A%)
c

where ¢ is the electrostatic potential. Whenever we write A, the components of it are given by the upper indices, e.g.
A = (A, A%) A3). The components with lower indices can be calculated using the metric tensor, so it depends on the
signature convention:

A, = gAY = (A%, —A) = (A%, — A" — A% —A%)

142 Chapter 6. Quantum Field Theory and Quantum Mechanics



Theoretical Physics Reference, Release 0.1

In our case we got Ay = A% and A; = —A? (if we used the other signature convention, then the sign of A would
differ and A; would stay the same). The length (squared) of the vector is:

A2 = A, A" = (A%)? — AP = (4%)° — A2
where A2 = [A|? = (A1)% + (42)% + (43)%

The position 4-vector is (in any metric):

= (et,x)
Gradient is defined as (in any metric):
10 o0 0 0
8u - (80761782783) - a@ - (Cat, %7 aiy7 (92)
the upper indices depend on the signature, e.g. for -2:
. 10 0 0 0
w_ (90 gl 52 93y _ (¢ 0 O O
8 (a 767858) (C@t’ 8$7 8y7 az>

and +2:
190 o0 0 0
oM =(0°040%0") = | ——2. 55 5
( ) cOt’ dx’ Oy’ 0z
The d’ Alembert operator is:
0? = 00"
the 4-velocity is (in any metric):
dzt  dt dz*
e i
Ve T a ey
where 7 is the proper time, v = g—i =1 —and v = %’t‘ is the velocity in the coordinate time ¢. In the metric with
-3
signature +2:
_ 2 2
P = = g = et gyt = OV e
ez

With signature -2 we get v2 = ¢2. The 4-momentum is (in any metric)
P =mv" =my(c,v)

where m is the rest mass. The fluid-density 4-current is (in any metric):
j* = pot = py(e,v)

where p is the fluid density at rest. For example the vanishing 4-divergence (the continuity equation) is written as (in

any metric):
0 0 \s
SN+ () = 5 | = | + V- | =
1-% -

10
= = — . =
0=0uj" =5, (pre) + V- (pyv) = o

Momentum (p = —ihV) and energy (E = ih%) is combined into 4-momentum as
E 10 )
= (C,p> =ih (c@t’ —V) = th (0y, —0;) = th (80,8J) = iho*

Py = Guvp” = thgu, 0" = iho,
143
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For the signature +2 we get p* = —iho" and p, = —ihd,,.
For p? we get (signature -2):

E2
P’ =pup" = (@")? —p* = (po)* —p° = = - p’

2.2

2 B
v, =mc

P =pup =m
comparing those two we get the following useful relations (valid in any metric):

E2
: _p2:m202
C

E2:m204+p202

E = \/m2c* + p2c2 = mc?y /1 + P’ =mc® 1+ P’ +0 P’ =
m2c? 2m?2c? mict
2 4
=m+ 2 40 < P )
2m

m3c?

the following relations are also useful:

p2 = p/,,pp' = 77128}L6M = 7712(32 = 752 (3080 + 3181) = *FL2 (8080 — 37(91) =

1 92 2 92
= 1 (cggﬁ - v2) = *g% +hV?

For the signature 42 we get:
p? =pupt = —h*0,0" = —h*9* = —h* (060" + 0;0") = —h* (—0o0o + 0;0;) =
2 92
= —h? (—C - v2> = %% — h*V?
So for example the Klein-Gordon equation:
(Z,jg; — V2 + m202> Y =0
can be for signature —2 written as:
(+h70% + m?c*) = (=p? + m*c*)y =0
and for +-2 as:
(=h%0% + m*)y = (p° + m*c*)Y =0
Note: for the signature +2, we would get p* = —iho" and p,, = —ihd,,.

For the minimal coupling D, = d,, + %eA“ we get:

D=8+ %eAO

D=0+ %eAj = —%(maﬂ’ —eAl) = —%(p —¢eA)
and for the lower indices:

Dy =090y + %6140

D =0; + %eAj = —%(maj —eAj) = —(ihdT — eAT) = %(p —eA)

St
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6.5.3 Multipole expansion

1 1 1 1

r—r| V(@ —1/)2 T ViZ—or v 12 _T\/1_2(r7/)f.f./+(r7')2

We can also use the formula:

S (Elim) (tmle') = 5 (8- 1R

m

and rewrite the expansion using spherical harmonics:

1 1 /!
- _Z ) P =
|r — 1’| rz(r) 1(E - 1)

=0

l,m l,m
6.6 Examples
6.6.1 Two Particles in Harmonic Potential
Itis a 1D, two-body problem with an interacting Hamiltonian
, 0 | & 1 2,2

H(zy,20) = — 32— -t + ——— + 2?22 + 1z
(@1, 22) 2022 2022 |x1— x| 2 L 2m 2

and it can be solved analytically. The Schrodinger equation is

L 0% 02 1

1,22 1,22 _
<_26I% - 587933 m + §w Ty + §w 1'2) \I/(l‘l,l'g) = E\Il(ml,scg)
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we use the substitution:

1
u= E($1 — Z3)
1
v = E(ml + z9)
then
0? 0? 0? 02
027 " 03~ w92
|1 — 22| = V2lul
:r% + x% =u? +0?
and

PN SN N S i U(u,v) = BV (u,v)
2au2 282)2 \/§‘U| 2 2

Note also the symmetry of the Hamiltonian H (21, z2) = H (22, x1) which after substitution is equivalent to H (u,v) =
H(—u,v). Now we can separate the equation:

d2 1
1 1,22 _
(b + g 1) Jelo) = st
1 4122 _
23,2 72 g1(v) = e1gi(v)
Ey=e+¢

the solution of the second equation is:

1 W\NT  we?
()= = ()" e m(vaw)
g=w(l+13) forl=0,1,2,...
where H,,(z) are the Hermite polynomials:

2 d” 2
Hn — _1 n_x —X
(0) = (-1’ e

The solution to the first equation can be approximated around the minimum of the potential, which occurs at point
u = ug (since the potential is symmetric with respect to u, we only treat the branch v > 0):

V(u) = \/§1|u| + %wqu = (2’% + 2’%) ws + ng(u —ug)? 4+ 0 ((u— u0)3)

w

ol
o

UO:2_

So the first few states can be approximated by the harmonic oscillator solution with frequency v/3w:

fi(u) = \/%k" (@) fwf{k(ﬁﬂ(u — o))

- (2—% +2_%>w%+\/§w(k+%) fork=0,1,2,...
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The final solution is then:

Ui (u,v) = fe(u)gi(v) =

ENE

ﬁ (2)" e m(vin)

En=e+ea= (2_% + 2_%) Wi +V3wlk+ 1) +w(+ 1)

\/ Noam

; <€w> T L 3 (= )

6.6.2 Quantum Harmonic Oscillator

The quantum harmonic oscillator for one particle in 1D is:

0 n? o
ho (e, t) = ~ 2L t) + V@),
Viz)= §mw2x2

This is a partial differential equation for the time evolution of the wave function ¥ (x, t), but one method to solve it is
the eigenvalues expansion:

ZCE¢E Je #F

where the sum goes over the whole spectrum (for continuous spectrum the sum turns into an integral), the cg coeffi-
cients are determined from the initial condition and ¢ () satisfies the one dimensional one particle time independent
Schrodinger equation:

2 2
f%%w(x) + V(@) (x) = Byp(w)

and this is just an ODE and thus can be solved with Hermes1D. There can be many types of boundary conditions
for this equation, depending on the physical problem, but in our case we simply have lim,_, 1, ¥ g(z) = 0 and the
normalization condition [*°_[¢p(z)|*dz = 1.

We can set m = i = 1 and from now on we’ll just write ¢(x) instead of ¥ (x):

1 d?

—5 g (@) + V(@)u(z) = By(z)

and we will solve it on the interval (a, b) with the boundary condition (a) = 1(b) = 0. The weak formulation is

/ab;(héf)(w(f?JFV(mW(x)v(x)dx {(wdi x} _E/ ’e

but due to the boundary condition v(a) = v(b) = 0 so [¢/(z)v(z)]; = 0 and we get

b b
[ 38D Ly @y de = B [ vl da

And the finite element formulation is then ¢(z) = >, y;¢;(z) and v = ¢;(z):

(/ E r) + V(2)pi(z)d;(x )dx) y]_E/ ¢i(2)¢;(z) dz y;

6.6. Examples 147



Theoretical Physics Reference, Release 0.1

which is a generalized eigenvalue problem:
Aijyj = EBijy;

with

b
Ay = [ 56@E ) + V@@ @) da

b
B;; =/ ¢i(w)p;(x)de

6.6.3 Radial Schrodinger Equation

Another important example is the three dimensional one particle time independent Schrodinger equation for a spheri-
cally symmetric potential:

1
S VE(x) + V()9(x) = Bu(x)
The way to solve it is to separate the equation into radial and angular parts by writing the Laplace operator in spherical
coordinates as:
I R N

2 —_—
V= op>  pdp*  p?

002 sinZ 0 09?2  tanf 00

Substituting (x) = R(p)Y (6, ¢) into the Schrodinger equation yields:

1
—§V2(RY) +VRY = ERY

L?RY

22

+VRY =ERY

1 1
——R'Y - =R'Y +
2 p

Using the fact that L2Y = [(I + 1)Y we can cancel Y and we get the radial Schrodinger equation:

1 1 I(l+ 1R
—fR”—fR’+u+VR:ER
2 p 202

The solution is then:

00 = Y eatm Rt Yim (3)
nlm

where R,,;(r) satisfies the radial Schrédinger equation (from now on we just write R(r)):

1

Ly (1 144D

2r2

1 /!
_iR (r) — ) R(r) = ER(r)

Again there are many types of boundary conditions, but the most common case is lim,_,, R(r) = 0 and R(0) = 1 or
R(0) = 0. One solves this equation on the interval (0, a) for large enough a.
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The procedure is similar to the previous example, only we need to remember that we always have to use covariant
integration (in the previous example the covariant integration was the same as the coordinate integration), in this case
r2 sin #drdfde, so the weak formulation is:

/ (—;R”(r) - %R’(r) + (v + 1(12;1)) R(r)) o(r)r? sin 6drdfdg —

_ / ER(r)u(r)r? sin §drddds

Integrating over the angles gives 47 which we cancel out at both sides and we get:

| (=50 = tro+ (v+ 1552 ) R ) wtorrtar -

—E/R yr2dr

We apply per partes to the first two terms on the left hand side:

/Oa (;R”(T) 7 1R'(r)> o(r)r2dr = /Oa 727142 (2R o) =

r

- / LR v = / a %’"ZR’&)v’(r)dr - %[rQR%r)v(r)]S =

0 0

/ —R/(r)v' (r)r?dr — a2R’(a)v(a)

We used the fact that lim,_,o 7> R’ (1) = 0. If we also prescribe the boundary condition R'(a) = 0, then the boundary
term vanishes completely. The weak formulation is then:

/Oa %R/(T)’UI(T)T2 + (V + l(z;l)) R(r)v(r)r®dr = E/ r)r? dr
’ / ~R/(r )2 4+ V(r)R(r)v(r)r? + l(l+1)R( r)dr —E/ R(r)v(r)r®dr

Another approach

Another (equivalent) approach is to write a weak formulation for the 3D problem in cartesian coordinates:

/ %Vz/}(x)Vv(x) + V(r)y(x)v(x) d®z = E/ Y(x)v(x) B3z
Q Q

and only then transform to spherical coordinates:

/027r de /07r de /Oa dr <;V1/)(X)VU(X) + V(r)qp(x)v(x)) 2sinf —

27
—E/ dgp/ d9/ dry x)r? sin 0
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The 3d eigenvectors ¢ (x) however are not spherically symmetric. Nevertheless we can still proceed by choosing our
basis as

Uilm( ) ¢zl( )}/lm( )

and seek our solution as

x) = Z Yjtm P51 (1) Yim (0, )

jlm

Using the properties of spherical harmonics and the gradient:

/Ylel/m/ sin 0 d6 dy = 611 Ommy

/ 12V Y10 VY sin 0 d dg = 1(1 4 1)81p: Sy

of . 10f5 1 0f
V=5 " et e as

¢
the weak formulation becomes:

( [ o) + 53 + 5 ourontr) + 2V (r)ouriontr dr) Yitm =

a
=FE / 2 i (r)d;1(r) dr Yjim
0
where both [ and m indices are given by the indices of the particular base function v;;,,. The X term is (schematically):

X = /r sin 0(r)Yim (0, ) (0a Vi + Voudj)VYim

There is an interesting identity:
/rf'Y}mVYl/m/ sinfdfdy =0

But it cannot be applied, because we have one more r in the expression. Nevertheless the term is probably zero, as can
be seen when we compare the weak formulation to the one we got directly from the radial equation.

How Not To Derive The Weak Formulation

If we forgot that we have to integrate covariantly, this section is devoted to what happens if we integrate using the
coordinate integration. We would get:

a

I(1+1)
272

LRy () — %R’(x)v(x) + <v +

0 2 > R(z)v(z)de =FE [ R(z)v(x)ds

0

Notice the matrix on the left hand side is not symmetric. There is another way of writing the weak formulation by
applying per-partes to the R'(r)v(r) term:

/Oa %R’(az)v(z)dz =
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a

— [ LR (2)da /0 ’ %R(w)v(m)dx - [iR'(m)v’(w)r + [13’@)@(@}

o T

We can use v(a) = 0 and R'(a) = 0 to simplify a bit:

[ %R/(x)v(m)dx =
0
- /0 ’ %R(x)v’(x)dx ~ /0 ' T%R(x)v(x)dx + lim <R’(x1v’(x> N R’(i)zv(x))

Since R(z) ~ r! near r = 0, we can see that for [ > 3 the limits on the right hand side are zero, but for [ = 0,1,2
they are not zero and need to be taken into account. Let’s assume [ > 3 for now, then our weak formulation looks like:

/ LR @y (@) + R( ! (&) + <V+l(l2;:1) —:2> R(x)v(x)dsz/OaR(x)v(x)dx

[ 3r@r @+ trepw+ (v 2 Ry s = 8 [ R

or

22

The left hand side is also not symmetric, however we can now take an average of our both weak formulations to get a
symmetric weak formulation:

/a %R/(.’E)'U/(x) + R(x)vf(x) - R’(iC)'U(.’E) + (V + W‘) R(SL')’U(.’E) de =
0

2r 2r2

- E/O R(z)o(z) dz

Keep in mind, that this symmetric version is only correct for [ > 3. For | < 3 we need to use our first nonsymmetric
version.

As you can see, this is something very different to what we got in the previous section. First there were lots of technical
difficulties and second the final result is wrong, since it doesn’t correspond to the 3D Schrédinger equation.

Scattering in radial potential

If V = 0, the radial equation is:

(1+1)
2r2

%R”(r) — %R/(T) + R(r) = ER(r)

The general solution is a linear combination of the spherical Bessel functions j;(kr) and n;(kr), whose asymptotic
expansion for r — oo is:

T 2

1 Im
ny(kr) — T €08 <kr — 2)

gi(kr) — kisin (kr - l7r)

so we get for large 7:

1 . Im
Ry(kr) = AZE sin (k:?“ — 2) + Bl—r coS (kr — ) =

=/A? + B? ksm(kr—l;—i—él) :Clklrsin<kr—l;r+5l>
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where
0; = atan2(By, Al)

C, = \/AIQ—‘rBZZ

eikr

We can then compare this to ¢ ~ e™** + f(6, ¢)

, by expanding e?** = k7030 = N™(2] 4 1)ilj; (kr) Py(cos 0):

¢t
k
f(0,0) = ﬁ Z(Ql + 1)(62i5’ —1)P(cos )

C =

Since o (#) = |f(#)|? and integrating over w we get the total cross section:

o= 4% (21 + 1) sin? §,

In order to find the phase shifts §;, we solve the radial equation for the full potential

I(1+1)
272

%R’(T) + (V +

1
—§R”(r) — ) R(r) = ER(r)
and then fit it to the above asymptotic solution for V=0. We require that the value and the slope must be continuous.
In particular, we take the logarithmic derivative ((log u)" = %) at the point r = a:

d
v = —logu

d
" =3 log Ry (kr)

expressing R;(kr) using ¢; and solving for it we get:

kji(ka) — yji(ka)
knj(ka) — viny(ka)

tan d; =

Now we can use these §; in the formula for the total cross section.

The problem can now be formulated in two ways. Either to solve the radial equation for a potential with finite reach and
then “measure” those phase shifts in the solution. Or by prescribing those phase shifts and we now need to calculate
the solutions (e.g. the energies) from the radial equation.

6.7 Radial Schrédinger and Dirac Equations

6.7.1 Variational Formulation of the Schrédinger equation
Lagrangian is:

L) = 5(V)? + V(x)p*(z)
Subject to the normalization constrain:

Nl = [ [o@)Pds - 1=0
The action is:

S[y] = / LdPe
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Variating it (subject to the normalization condition) we get:
0= 6(5 — eN) = 5/ L(T9)? + V(o) (@)dz — ¢ (/ () Pdz — 1) -
= / (Vap) - (V) + 2Vpdrp — 2epdapdx
= 2/ (=3V% + Vi — e) Sypd’z + /(n - V)sy AP

Which gives the Schrddinger equation assuming the surface integral vanishes.

Note: to apply the variation § correctly, one uses the definition:

OF[Y] = %F[w + b))

e=0

Weak Formulation

The weak formulation is obtained from the above by substituting d1) — v (the test function) so we get:

/ $(VY) - (Vo) + Vo — epo d’x

6.7.2 Radial Schrodinger equation

There are two ways to obtain the radial Schrodinger equation. Either from the Lagrangian, or from the equation itself.

From the Equation

1
~3VAU) + V(r)e(x) = By(x)
The way to solve it is to separate the equation into radial and angular parts by writing the Laplace operator in spherical
coordinates as:
_0*f  20%f  LPf

Vif=—
d op*  pdp*  p?

002  sin®0 0¢%  tan® 00
Substituting 1 (x) = R(p)Y (6, ¢) into the Schrodinger equation yields:

1
—§V2(RY) +VRY = ERY

L?RY

55+ VRY = ERY
p

1 1
—ZR'"Y — “R'Y +
2 p

Using the fact that L?Y = [(I + 1)Y we can cancel Y and we get the radial Schrodinger equation:

—ER”—ER’—FM

VR=ER
2 p 2p2 +
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From the Lagrangian

We need to convert the Lagrangian to spherical coordinates. In order to easily make sure we do things covariantly, we
start from the action (which is a scalar):

S[y] = / 1(VY)? + V()P (z) Pz =
= [+ viRy))tapn -
- /(%(R’QY2 + R*(VY)? +2RR'(pY) - VY) + V(RY)?)p*dpd) =

I(l+1
:/(5 <R’2+R2 (pt ))+VR2>p2dp:

z/ngWHfV+§U+DW%m=

where we used the following properties of spherical harmonics:

/YMQ:1

/p%vyfmzzxk+n
(Y7)- (pVY) =0

We now minimize the action (subject to the normalization | p?R?dp = 1) to obtain the radial equation:

0= 5(S —eN) = 5/5;)21%’2 L (V4 M+ )R — PR dp =

:2/%fﬁwmhufv+§m+nﬂ%R—mﬁwR@:

:2/«—ﬁﬁwqwfv+aa+nﬂpfwaR®+m%mmg

So the radial equation is:
(=3p°R) + (p*V + 311+ 1))R = p°R
In agreement with the previous result.
Weak Formulation
The weak formulation is obtained from the action above by substituting 6 R — v (the test function) so we get:
/%pQR’v/ + (P*V + (1 +1))Rvdp = e/p2Rv dp
We can also start from the equation itself, multiply by a test function v:
(—2p*R)v+ (p°V + 31(1 + 1))Rv = ep*Rv

We integrate it. Normally we need to be using p?dp in order to integrate covariantly, but the above equation was
already multiplied by p? (i.e. strictly speaking, it is not coordinate independent anymore), so we only integrate by dp:

JEAPRY 04 PV 4 0+ D) Redo = ¢ [ 5 Rodp
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After integration by parts:
/ p*Rv' + (p°V + 21(1+ 1)) Rodp — S[p*R'v]§ = /pQRvdp
Where a is the end of the domain (the origin is at 0). The boundary term is zero at the origin, so we get:
/%p2R'v' + (p°V + 21+ 1))Rvdp + 3 p*R/ (a)v(a) = e/pQRvdp

We usually want to have the boundary term 3 p*R’(a)v(a) equal to zero. This is equivalent to either letting R’ (a) = 0
(we prescribe the zero derivative of the radial wave function at a) or we set v(a) = 0 (which corresponds to zero
Dirichlet condition for R, i.e. setting R(a) = 0).

We can also write all the formulas using the Dirac notation:

1= / dpg? |o) (o]

ety = 222
(p|R) = R(p)
SAPRY +(V +4

(p|H|R) =
H|R) = E|R)

Then normalization is:
(RIR) = [ 4o (Rlp) (o1F) = [ dpp*R¥(p)

The operator H can be written as:

. 1 d 5 d (l+1)
W) = ol) (s (P55 ) + v + 30D
so to recover the above formula, we do:
(plHIR) = / dg' o (plBL1o') | R) =
1d d l l+ 1 1 I(l+1

Operator His symmetric, because:
i2//2d_ i2//2d
fpz(pg)p p= pg(pf)gp p

(v|H|R) = E (v|R)
/dpp2 (vlp) (p|H|R) = E/dppz (vlp) (p| R)

/dprv(p) (;2(—5023’)'+(V+ 2l(l+1 ) E/dpp v

and we obtain the FE formulation by expanding [R) = >, R;|j) (note that the basis [j) is not orthogonal, so in
particular . |7) (j| # 1):

The weak formulation is:

J

> (lH) Ry = B _(ilj) R
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This is a generalized eigenvalue problem. In the special case of an orthonormal basis, (i|j) = d;; (which FE is not),
we get:

> Gl Ry = R

R; = (i|R)

Which is an eigenvalue problem.

6.7.3 Variational Formulation of the Dirac equation
The QED Lagrangian density is
L = ) (ihey" D, — mc®)y — %FWF’“’

where:

7

D,=0,+ heAM
Fu = 0,A, — 0, A,

We will treat the fields as classical fields, so we get the classical wave Dirac equation, after plugging this Lagrangian
into the Euler-Lagrange equation of motion:

(ihey" D, — mc®)y = 0
Oy F"M = —ecpyp
Notice that the Lagrangian happens to be zero for the solution of Dirac equation (e.g. the extremum of the action).
This has nothing to do with the variational principle itself, it’s just a coincindence.
In this section we are only interested in the Dirac equation, so we write the Lagrangian as:
L = P (ihey" D,, — mc®)y) =
= 1y (ihey" D, — me* )y =
TA0(3% a0 i . i 2
= 17" (iher (80 + £ eAo) + iy (9 + ped) —me)p =
= T (ihedy + ihey*y'0; — Y0me® — ceAg — ceny A =

= wT(ihg + ca'p; — fmc? — ceAg — cea Ay =

ot
= —wT(—ih% + ca’(—p; + eA;) + Bmc? + ceAo ) =
= —W(—ih% +ca- (p—eA)+ Bme + V)

where we introduced the potential by V' = ceAy. We also could have done the same manipulation to the dirac equation
itself and we would get the same expression:

(—ih% +ca-(p—eA)+pBmet+ V) =0

The corresponding eigenvalue problem is:

(ca-(p—eA)+ Bme? + Vv =Wy
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6.7.4 Radial Dirac equation

As for the Schrodinger equation, there are two ways to obtain the radial Dirac equation. Either from the Lagrangian,
or from the equation itself.

From the Equation

The manipulations are well known, one starts by writing the Dirac spinors using the spin angular functions and radial

components P and Q):
P s
Xx
w = . /4 .
92X,

f= (Lo -, )

and putting this into the Dirac equation one obtains:

(—hc (;7 - g) Q+(V+mc2—W)P) 0 b ),
d K P Z‘l J3 -
0 (hc (@ + ;) P+ (V—me— W)Q) I,
So one obtains the following radial equations:
d K 9
—he| ———)Q+V+me-—W)P=0
dp p

hc(d—i-H)P—l—(V—ch—W)Q:O
dp p

From the Lagrangian

We can reuse the calculations from the previous sections, because the Lagrangian happens to be zero for the solution
of the Dirac equation:

L = P (ihey" D, — mc®)yp =

= fz/ﬁ(fih% +ca-(p—eA)+ Bmc® + V) =

_ d _ k 2 1 s

(g iz, ) (elEoE)er 0 rmer) 0 o

g g 0 (hc (dip + %) P+ (V- mc2)Q) isX T

1 d | d N

= r (‘hc ( - K) Q+(V+ mCQ)P) XExE + =@ (hc ( + K) P+ (V- ch)Q) XX

P dpp p dp ' p

‘We can now write the action:
S = /z:p2 dpdQ

the spin angular functions integrate to 1:
/ XExEdQ =1

/ A0 = 1
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the p? cancels out and we get:

S[P, Q) :/P<—hc <;p - ’;) Q+(V+mc2)P> +Q (hc (;p#;) P+(V—mc2)Q> dp =

= / —he(PQ — QP') + hc%“PQ + V(P? 4 Q%) +mc*(P* — Q*)dp
the normalization condition is:
N:/P2+Q2dp71:0
and we can variate the action, we also shift the energy W = € + mc?:
0=06(S—WN)=05(S—eN—mcN)

which effectively adds —mc?(P? + Q2) into the Lagrangian, which changes the term mc?(P? — Q?) into —2mc?Q?.
We can now variate the (constrained) action:

0=6 / _he(PQ' — QP) + hc%”PQ V(P 4 Q2) — 2mQ%dp —
=2 / <hc((5P)Q’ — PlOQ) + hcg((éP)Q + PSQ)) + (PSP + Q6Q)V — 2mcQ0Q — ¢(PSP + QcSQ)) dp
+[P6Q — QOP)G =
=2 / 6P <—th’ + hch + PV — 6P> +0Q (th/ + hc%P +QV —2mc*Q — eQ) dp+ [PsQ — Q5P| =
which gives the two radial equations:
—he@ + hch + PV =P

heP' + hc%P +QV —2mc*Q = €Q

Weak Formulation

The weak formulation can be obtained by substituting 6 P — v and §@Q — vs into the action above (and separating
the integrals) and omitting the the boundary term:

/ —heQ'vi + helQuy + PVuidp = € / Purdp
p
/th’vg + thPvz + QVuy — 2mc?Quadp = E/QUde
p
We can also start from the radial equations themselves to get the same result. If we start from the equations themselves

(which is the most elementary approach), there are no boundary terms (because we didn’t integrate by parts). We can
separate the integrals according to the matrix elements that they contribute to:

/PVvldp—l—/—th’vl —&—hc%Qvldp: e/Pvldp

/th’vg + ﬁc%Pvz + /(V —2mc?®)Quadp = E/Qvgdp

To show that this problem generates a symmetric matrix, it is helpful to write the radial equations in the following
form:

H|P,Q)=¢|P,Q)
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where:

—+

the operator H is Hermitean (H’Jr = I:I), because (—fp) =d.

[rioo [ ()

and all the other quantities are just scalars.

Stricly speaking, the exact Dirac notation (that is coordinate/representation independent) would be the following (no-
tice the missing p? in the completeness relation, which is different to the radial Schrodinger equation):

HI|P,Q) =€|P,Q)
1= [ 4ol o
(plp") =do(p—p")

[ i) (017.@yas' = e (oiP.@)
_( Pp)
wir.@ = o) )
(plH|p") = d(p—p") hc(
The normalization is:
(P.QIP.Q) = / dp (P, Qlp) (ol P.Q) = / dp(P* + Q%) =1

The weak formulation is:

(v|H|P,Q) = ¢ (v|P, Q)

where the test function |v) is one of:

1)
lv) =

[v2)

_ o O =

The FE formulation is then obtained by expanding |P, Q) = >, qx |k):
D (kA @ =€) (k) a
1 !

The basis |k) can be for example the FE basis, some spline basis set, or gaussians. The basis has actually 2n base
functions and it enumerates each equation like this:

|4) fori=k<n
k) =
fori=k>=n

i)

= o O =
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So at the end of the day, the (k|H|l) matrix looks like this:

) GVl helil - &+ 51)
(klH = ( helild + 513) V() = 2mel) )

The matrix is 2n X 2n, composed of those 4 matrices n x n. The (k|l) matrix looks like this:

s 0
(KlD) = ( ) () )
We can also write the matrix elements explicitly. Let |i) = B;(p), then:
i) = [ BiB;dp
@WV13) = [ BvB;dp
(i|V — 2mc?|j) = /BZ-(V —2mc?)B; dp
hc<z‘|dip + S\j) - hc/BiB; +B€Bj dp

d
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C

compressible

Euler equations, 88
computation

residue, 7
contour integration, 6
coordinates

cylindrical, 31
covariant

differentiation, 24

integration, 30
curvature, 26
cylindrical

coordinates, 31

D

delta function, 11
derivation

magnetohydrodynamics, 84
derivative

Lie, 27
differential geometry, 23
differentiation

covariant, 24
dimensional analysis, 141
dirac notation, 20
divergence

operator, 29

E

Electroweak Standard Model, 105
equation

Klein-Gordon, 131
equations

compressible Euler, 88
Euler

equations, compressible, 88
evolution

operator, 118

F

FEM

magnetohydrodynamics, 85
Fermi-Walker

transport, 26
fermions, 120
Feynman rules, 125
fluid dynamics, 77, 88
functional derivative, 16

G

gauge, 108
geodesics, 26
Group

Lorentz, 59
GWS

Lagrangian, 109

H

Hagen-Poiseuille

Law, 83
Higgs boson, 106
homogeneous functions, 22

implicit surface
integration, 5
integration, 3
covariant, 30
implicit surface, 5
line, 4
orthogonal coordinates, 5
surface, 4, 5
volume, 4

J

Jordan’s Lemma, 8

K
Killing
vector, 29
Klein-Gordon
equation, 131
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L
Lagrangian
GWS, 109
laplace
operator, 30
Law
Hagen-Poiseuille, 83
leptons, 107
Lie
derivative, 27
line
integration, 4
Lorentz
Group, 59
low energy theories, 129

M

magnetohydrodynamics, 83
derivation, 84
FEM, 85

manifolds, 23

metric, 27

MHD, 83

multipole expansion, 144

N

newtonian physics, 45

O

0O(4) Group, 63
operator
divergence, 29
evolution, 118
laplace, 30
orthogonal coordinates
integration, 5

P

parallel

transport, 25
particle mass, 110
perturbation theory, 133
proper time, 65

Q

QED, 130

QFT, 104
tensors, 142

QM, 104

quantum electrodynamics, 130

quantum field theory, 104

quantum mechanics, 104, 129

quarks, 110

R

residue
computation, 7

residue theorem, 6

rotating disk, 34

S

S-matrix, 118
scalar, 23
scattering theory, 136
spherical harmonics, 19
Standard Model, 105
stress-energy

tensor, 77
surface

integration, 4, 5
surface integrals, 3

T

tensor, 23
stress-energy, 77
tensors
QFT, 142
transport
Fermi-Walker, 26
parallel, 25

Vv

variation, 16
vector, 23
Killing, 29
vector bosons, 120
volume
integration, 4
volume integrals, 3

W

Wick Theorem, 121

Y

Yukawa terms, 107
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